1	Ion Flux in Salinized Ectomycorrhizal Poplar Roots
2	
3	Corresponding author:
4	Shaoliang Chen
5	College of Biological Sciences and Technology (Box 162)
6	Beijing Forestry University
7	Qinghua-East Road 35, Haidian District
8	Beijing 100083
9	PR China
10	Tel: +86-10-62338129
11	Fax: +86-10-62336164
12	E-mail: Lschen@bjfu.edu.cn
13	
14	Journal Research Area: Environmental Stress and Adaptation
15	

1	<i>Paxillus involutus</i> strains MAJ and NAU mediate K ⁺ /Na ⁺ homeostasis
2	in ectomycorrhizal <i>Populus</i> × <i>canescens</i> under NaCl stress ¹
3	
4	Jing Li ^{2,3} , Siqin Bao ³ , Yuhong Zhang ³ , Xujun Ma, Manika Mishra-Knyrim, Jian Sun,
5	Gang Sa, Xin Shen, Andrea Polle, Shaoliang Chen *
6	
7	College of Biological Sciences and Technology (Box 162), Beijing Forestry
8	University, Beijing 100083, P.R. China (J.L., S.B., Y.Z., X.M., J.S., G.S., X.S., S.C.);
9	School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo
10	454000, P.R. China (J.L.); Büsgen-Institut, Forstbotanik und Baumphysiologie,
11	Georg-August Universität Göttingen, Göttingen, Germany (M. MK., A.P.)
12	

1 Footnotes

2	¹ The research was supported jointly by National Natural Science Foundation of
3	China (30872005; 31170570), the Alexander von Humboldt-Stifung/Foundation
4	(Germany), German Science Foundation through Poplar Research Group Germany
5	(FOR496, Po362), Fundamental Research Funds for the Central Universities (JC2011-
6	2), Foundation for the Supervisors of Beijing Excellent Doctoral Dissertations
7	(YB20081002201), Beijing Natural Science Foundation (6112017) and Key Projects
8	of the Ministry of Education, PR China (209084).
9	² Present address: School of Computer Science and Technology, Henan Polytechnic
10	University, Jiaozuo, 454000, P.R. China
11	³ These authors contributed equally to this work.
12	* Corresponding author: e-mail Lschen@bjfu.edu.cn
13	

1 **ABSTRACT**

Salt-induced fluxes of H⁺, Na⁺, K⁺, and Ca²⁺ were investigated in ectomycorrhizal 2 (EM) associations formed by Paxillus involutus (strains MAJ and NAU) with the salt-3 4 sensitive poplar hybrid *Populus* × *canescens*. A scanning ion-selective electrode 5 technique was used to measure flux profiles in non-EM roots and axenically grown EM cultures of the two P. involutus isolates to identify whether the major alterations 6 7 detected in EM roots were promoted by the fungal partner. EM plants exhibited a 8 more pronounced ability to maintain K^+/Na^+ homeostasis under salt stress. The influx of Na⁺ was reduced after short-term (ST; 50 mM NaCl, 24 h) and long-term (LT; 50 9 10 mM NaCl, 7 d) exposure to salt stress in mycorrhizal roots, especially in NAU 11 associations. Flux data for *P. involutus* and susceptibility to Na⁺-transport inhibitors indicated that fungal colonization contributed to active Na⁺ extrusion and H⁺ uptake in 12 13 the salinized roots of *Populus* × canescens. Moreover, EM plants retained the ability 14 to reduce the salt-induced K⁺ efflux, especially under LT salinity. Our study suggests 15 that *P. involutus* assists in maintaining K^+ homeostasis by delivering this nutrient to 16 host plants and slowing the loss of K⁺ under salt stress. EM poplar plants exhibited an enhanced Ca²⁺ uptake ability, whereas ST and LT treatments caused a marked Ca²⁺ 17 efflux from mycorrhizal roots, especially from NAU-colonized roots. We suggest that 18 the release of additional Ca^{2+} mediated K⁺/Na⁺ homeostasis in EM plants under salt 19 20 stress.

1 Soil salinization is a serious factor restricting the expansion of agriculture and 2 forestry around the world. Among the novel biotechnological tools that can enhance 3 salt resistance, inoculation with ectomycorrhizal (EM) fungi has been suggested to be 4 an important measure for enhancing the performance of and ensure biomass 5 production by woody species in saline environments (Luo et al., 2009). In general, 6 EM fungi enhance the growth of host plants by increasing mineral nutrition and 7 reducing the uptake of sodium (Na⁺) ions under salt stress (Smith and Read, 2008; 8 Hall, 2002; Polle and Schützendübel, 2003). For example, Scleroderma bermudense 9 significantly increases P and K⁺ levels but decreases Na⁺ and Cl⁻ concentrations in 10 Coccoloba uvifera plants (Bandou et al., 2006). Similarly, Hebeloma crustuliniforme 11 and Laccaria bicolor reduce tissue Na⁺ and Cl⁻ concentrations and alleviate salt injury 12 in white spruce (Picea glauca), black spruce (Picea mariana), and jack pine (Pinus 13 *banksiana*) seedlings (Muhsin and Zwiazek, 2002; Nguyen et al., 2006). In contrast to 14 conifers, EM associations did not decrease tissue concentrations of Na⁺ and Cl⁻ in 15 NaCl-treated trembling aspen and paper birch (Yi et al., 2008), showing that the 16 fungal effect on salt accumulation varies with EM fungus and host plant species. 17 Paxillus involutus strains MAJ and NAU have been identified as highly salt-18 tolerant fungi (Gafur et al., 2004; Langenfeld-Heyser et al., 2007; Zhang et al., 2008). 19 Colonization with *P. involutus* strain MAJ reduces the buildup of Na⁺ but enhances K⁺ 20 accumulation in the leaves of a salt-sensitive poplar, *Populus* \times *canescens* 21 (Langenfeld-Heyser et al., 2007, Luo et al., 2011). The maintenance of a high K^+/Na^+ 22 ratio is critical for salt-tolerance in herbaceous plants (Shabala, 2000; Tester and 23 Davenport, 2003; Chen et al., 2007; Shabala and Cuin, 2008) and woody species, 24 including Populus spp. (Chen et al., 2001, 2002a, 2002b, 2003; Sun et al., 2009a, 25 2009b, 2010, 2012). At the cellular level, salinized plants avoid Na⁺ toxicity in the 26 cytosol by compartmentalizing Na⁺ into the vacuole and excreting Na⁺ into the 27 external environment or the apoplast (Blumwald et al., 2000; Hasegawa et al., 2000; 28 Zhu, 2001, 2003; Ottow et al., 2005; Apse and Blumwald, 2007; Munns and Tester, 29 2008; Chen and Polle, 2010). The driving force for Na^+/H^+ antiporters is provided by H^+ -ATPases, which make an important contribution to the maintenance of low Na⁺ 30

1	levels in the cytosol (Chen and Polle, 2010). In addition, NaCl-induced K^+ deficiency
2	in plants is regulated by depolarization-activated outward rectifying K^+ channels (DA-
3	KORCs) and depolarization-activated non-selective cation channels (DA-NSCCs)
4	(Shabala et al., 2005, 2006a; Demidchik and Maathuis, 2007; Shabala and Cuin,
5	2008). Moreover, salinity is known to cause oxidative stress (Zhu, 2003; Demidchik
6	et al., 2010), and a large proportion of NSCCs are ROS-activated (Demidchik et al.,
7	2002, 2003). Roots of EM plants accumulate more, and leaves less, Na^+ than the
8	respective tissues of non-EM plants, probably due to decreased xylem loading
9	(Langenfeld-Heyser et al., 2007). EM roots increase the supply of K^+ under salt stress
10	(Langenfeld-Heyser et al., 2007). However, how EM fungi assist plants by improving
11	Na^+ and K^+ relationships after exposure to salinity is not yet clear.
12	It has been shown that different strains of P. involutus differ in their abilities to
13	form typical mycorrhizal structures with poplar roots (Gafur et al., 2004). While the
14	fungal strain MAJ forms a typical hyphal mantle and Hartig net with roots of Populus
15	\times canescens, NAU induces defense reactions, such as cell wall thickening, and is
16	unable to intrude between the host cells (Gafur et al., 2004). Clarifying whether and
17	how the incompatible fungal isolate affects the salt tolerance of host plants is
18	necessary.
19	<i>Populus</i> \times <i>canescens</i> roots exhibit increased Ca ²⁺ enrichment during
20	mycorrhizal symbiosis with P. involutus strain MAJ (Langenfeld-Heyser et al., 2007).
21	Ramos et al. (2009) found that EM roots are more efficient than non-EM roots in
22	taking up Ca^{2+} from the external medium. Under NaCl stress, Ca^{2+} regulates K^+/Na^+
23	homeostasis in a sos3 mutant and wild-type Arabidopsis (Liu and Zhu, 1997). Ca ²⁺
24	has been suggested to restrict Na ⁺ uptake via VI-NSCCs (Demidchik and Tester,
25	2002; Tester and Davenport, 2003) and restrain K^+ loss through DA-KORCs and DA-
26	NSCCs (Shabala et al., 2006a; Sun et al., 2009b; Chen and Polle, 2010). Although
27	Ca^{2+} is well known to ameliorate salt stress, Ca^{2+} possibly impacts K^+/Na^+
28	homeostasis via EM associations is unclear.
29	Using ion selective vibrating microelectrodes, significant correlations between
30	anion, Ca^{2+} and H^+ fluxes were found on root surfaces with increased fluxes after

1	colonization of different hosts with either EM or arbuscular mycorrhizas (AM)
2	(Ramos et al., 2008, 2009). The goal of the present study was to examine the role of
3	EM in ion homeostasis under salt stress. We used the scanning ion-elective electrode
4	technique (SIET) to measure steady and transient profiles of ion fluxes (Na ⁺ , H ⁺ , K ⁺ ,
5	and Ca ²⁺) in <i>Populus</i> × <i>canescens</i> – <i>P. involutus</i> associations, non-EM roots, and
6	fungal mycelia of the two P. involutus isolates MAJ and NAU. We also examined the
7	effects of Ca ²⁺ on K ⁺ and Na ⁺ fluxes in poplar roots; <i>Populus</i> × <i>canescens</i> exhibited
8	Ca ²⁺ enrichment upon colonization with the EM fungus <i>P. involutus</i> .
9	
10	RESULTS
11	Na ⁺ , K ⁺ , and Ca ²⁺ Concentrations in Roots and Leaves
12	SEM-EDX was used to measure relative changes in the Na ⁺ , K ⁺ , and Ca ²⁺
13	concentrations in the cross sections of roots and leaves. NaCl treatment (50 mM) for
14	one week significantly increased Na^+ in the roots and leaves, with the exception of
15	plants colonized with <i>P. involutus</i> strain NAU (Fig. 1). In contrast to Na ⁺ , root and
16	leaf K ⁺ concentrations decreased in salt-treated plants, especially non-mycorrhizal
17	(NM) plants (Fig. 1). As a result, the K^+/Na^+ ratio in roots and leaves was markedly
18	reduced by salt stress, with a more pronounced effect in NM plants compared to
19	mycorrhizal (EM) plants (Fig. 1). P. involutus mycorrhization increased Ca2+ by 19-
20	24% in the roots and 53-72% in the leaves of non-stressed plants (Fig. 1). Salinized
21	<i>Populus</i> × <i>canescens</i> had a reduced Ca^{2+}/Na^{+} ratio in the roots and leaves; however,
22	the salt effect was less evident in NAU-mycorrhizal plants compared to NM and
23	MAJ-mycorrhizal plants (Fig. 1).
24	
25	Steady and Transient Ion Fluxes in Roots and EM Fungus
26	Na ⁺ flux
27	SIET analyses showed that the pattern of Na ⁺ fluxes in EM roots differed from
28	that of NM roots after short-term (ST, 24 h) and long-term (LT, 7 d) exposure to 50
29	mM NaCl (Fig. 2). In NM roots, ST stress caused a net Na^+ influx at the region 1,400

to 2,000 μm from the apex, whereas LT salinity resulted in a stable and constant
 influx along the whole measured distance from 50 to 2,000 μm (Fig. 2). Compared to
 NM roots, the salt-induced entry of Na⁺ was less pronounced in MAJ- and NAU mycorrhizal roots when considering both spatially resolved values along the scanned
 surface (Fig. 2) and mean values (Fig. 3A). A salt-induced efflux of Na⁺ was detected
 in some regions along these mycorrhizal roots (Fig. 2).

7 The mycelia of the two P. involutus strains, MAJ and NAU, exhibited a 8 marked Na⁺ efflux under ST and LT stress (Fig. 3, B and C). The NaCl-induced Na⁺ 9 efflux was typically higher under conditions of high salinity (400 mM NaCl) 10 compared to lower salinity (50, 100, and 200 mM NaCl) (Fig. 3, B and C). However, 11 the two *P. involutus* strains displayed different capacities to sustain the Na⁺ efflux at 12 high salt concentrations (400 mM NaCl). LT-treated NAU exhibited a flux rate similar 13 to that of ST-treated hyphae, whereas a reduced Na⁺ efflux was detected in MAJ under 14 LT salinity (Fig. 3, B and C). Pharmacological experiments showed that the high saltinduced Na⁺ efflux in the two fungal strains was significantly reduced by the Na⁺/H⁺ 15 16 antiporter inhibitor amiloride, or the plasma membrane H⁺-ATPase inhibitor sodium 17 orthovanadate (Fig. 4A).

18

19

H^+ flux

20 SIET measurements of root apices revealed a net H⁺ influx into NM roots in 21 the absence of salt stress (Fig. 5; mean values are shown in Fig. 6A). In contrast, EM 22 roots were characterized by stable and constant H⁺ effluxes along the measured 23 regions (Figs. 5 and 6A). ST and LT salinity caused a typical shift of H^+ efflux 24 towards an influx in EM roots (Figs. 5 and 6A). In the absence of fungal colonization, 25 NaCl did not significantly change the H^+ flux profile along the root axis after ST or 26 LT exposure, though the H^+ flux oscillated in the measured regions (Fig. 5). 27 MAJ and NAU mycelia exhibited a net H⁺ efflux under control conditions

MAJ and NAU mycella exhibited a net H efflux under control conditions
 similar to that of EM roots (Fig. 6, A-C). ST and LT salinity reduced the efflux of H⁺
 into strain MAJ (Fig. 6B). A similar trend was observed in the salinized hyphae of
 strain NAU, though H⁺ fluxes in ST-treated NAU varied with salt concentration (Fig.

1 6C). The salinized fungus NAU exhibited a temporary influx (approximately 5-10 2 min) during the period of recording (30 min), especially under LT treatment, though 3 the mean value indicated outward rectification (data not shown).

4 The salt-induced transient H⁺ kinetics in roots and fungal mycelia were also 5 examined. In the absence of salt stress, H^+ efflux was detected in EM roots instead of H⁺ influx in NM roots (Fig. 6D). Salt shock (50 mM NaCl) caused a pronounced shift 6 7 in the H^+ efflux toward an influx in EM roots (Fig. 6D), but no significant changes in 8 the H^+ kinetics of NM roots were observed during the recording period (Fig. 6D). The 9 responses of the transient H^+ kinetics to salt shock were compared between the two P. 10 involutus strains. After exposure to NaCl (50 to 400 mM), hyphae exhibited an 11 instantaneous decrease in the H⁺ efflux, which then remained constant during the 12 period of recording (40 min) (Fig. 6, E and F). Compared to strain NAU, the shock-13 induced reduction in H⁺ efflux was more pronounced in strain MAJ over the 14 concentration range of 50 to 400 mM NaCl (Fig. 6, E and F).

15

16 K^+ flux

17 Although the K^+ flux varied along the root axis (Fig. 7), ST and LT salt treatments resulted in an overall net K⁺ efflux from NM roots (Fig. 8A). 18 19 Mycorrhization of poplar roots with *P. involutus* reduced the K⁺ efflux under ST and 20 LT treatments, with the exception of ST-stressed MAJ-mycorrhizal roots (Figs. 7 and 21 8A). ST and LT treatment caused a net K⁺ efflux from the mycelia of both NAU and 22 MAJ, but the effect was more pronounced in MAJ, especially under ST salinity (Fig. 23 8, B and C). TEA, a K^+ channel blocker, significantly decreased the salt-induced K^+ 24 efflux from the hyphae of the two strains (Fig. 4B). 25 In salinized poplar roots, the transient K⁺ kinetics in response to salt shock 26 followed a trend similar to the steady state measurements (Fig. 8, A and D). Salt shock 27 caused an evident K^+ efflux in non-mycorrhizal roots, but the flux rate was lower in 28 MAJ- and NAU-mycorrhizal roots (Fig. 8D). In the hyphae of the two strains, the rate 29 of K⁺ efflux was reduced after the addition of NaCl (50-400 mM) (Fig. 8, E and F). An

instantaneous increase in the K⁺ influx was detected in MAJ and NAU after the onset of salt shock (Fig. 8, E and F).

3 4

 Ca^{2+} flux

5 Steady state flux measurements showed that ST and LT treatment accelerated Ca^{2+} efflux along mycorrhizal roots, especially in NAU-mycorrhizal plants (Fig. 9, 6 mean values are shown in Fig. 10A). In the absence of salt stress, the hyphae of the 7 two strains exhibited Ca^{2+} influx, with a higher flux rate in MAJ than in NAU (Fig. 10, 8 B and C). ST-treated MAJ maintained the Ca^{2+} influx, but the flux rate decreased with 9 10 increasing NaCl concentrations (Fig. 10B). In strain NAU, ST salinity reduced the 11 influx under low salt conditions (50, 100 mM NaCl) and shifted towards an efflux at high salinity (200, 400 mM NaCl) (Fig. 10C). Under LT stress, the pattern of Ca²⁺ flux 12 13 was similar in the two strains. LT salinity reduced the influx or reversed the 14 rectification toward an efflux (Fig. 10, B and C).

When subjected to salt shock, EM roots exhibited a transient increase in Ca^{2+} 15 efflux, but no corresponding changes were observed in non-mycorrhizal roots (Fig. 16 10D). The shock-induced Ca^{2+} efflux was more pronounced in MAJ-mycorrhizal 17 roots than NAU-colonized roots (Fig. 10D). LaCl₃, an inhibitor of Ca²⁺-permeable 18 channels, did not markedly restrict the high rate of Ca^{2+} efflux from salt-shocked MAJ 19 20 and NAU roots (Supplemental Fig. S1). In the absence of salt stress, the mycelia of the two strains exhibited a stable and steady influx of Ca^{2+} , typically with higher flux 21 rates in MAJ than NAU (Fig. 10, E and F). NAU hyphae exhibited a Ca^{2+} efflux 22 23 immediately after the addition of NaCl (50-400 mM) (Fig. 10F). Similarly, salt shock reduced the Ca^{2+} influx in strain MAJ, though a transient increase in Ca^{2+} influx was 24 observed in the presence of 400 mM NaCl (Fig. 10E). 25

- 26
- 27

Effects of Ca^{2+} on Salt-Induced K⁺ and Na⁺ Fluxes in *Populus* × *canescens* Roots

28 The effect of Ca^{2+} on K^+ and Na^+ fluxes was examined in salinized roots. The 29 aim was to investigate whether Ca^{2+} released from salt-treated mycorrhizal 30 associations benefits root cells in the control of K^+/Na^+ homeostasis. Ca^{2+} application (10 mM) markedly limited the salt-induced K⁺ efflux and enhanced the apparent Na⁺
 efflux in *Populus* × *canescens* roots (Fig. 11). More profound effects were found in
 the meristematic zone (K⁺ and Na⁺) and elongation region (Na⁺) than in other parts of

4 the root.

1 **DISCUSSION**

2

EM Fungal Colonization Ameliorated K⁺/Na⁺ Homeostasis under Salt Stress

3 Colonization of the salt-sensitive poplar *Populus* \times *canescens* with EM fungus 4 *P. involutus* (strain MAJ) was previously found to improve growth, prime for 5 increased stress tolerance, and increase nutrition under salt stress (Langenfeld-Heyser 6 et al., 2007; Luo et al., 2009, 2011). Similar findings were observed in the present 7 study. NM plants abscised old leaves from the lower shoots and upper leaves 8 displayed salt damage after 7 days of NaCl treatment (50 mM; Supplemental Fig. 9 S2D). However, the salt injury was alleviated by ectomycorrhizal colonization 10 Supplemental Fig. S2, D-F). Salinized poplars exhibited an enhanced capacity to 11 maintain K⁺/Na⁺ homeostasis in the presence of fungal colonization (strains MAJ and 12 NAU). The maintenance of K^+/Na^+ homeostasis is crucial for a poplar to tolerate 13 saline conditions (Chen et al., 2001, 2002a, 2002b, 2003; Sun et al., 2009a, 2009b, 14 2010; Chen and Polle, 2010). SEM-EDX microanalysis data indicate that the high K^+/Na^+ ratio in mycorrhizal plants was the result of less Na^+ accumulation and K^+ 15 16 reduction under NaCl stress than in NM plants (Fig. 1). This finding is in accordance 17 with our previous finding that MAJ-mycorrhizal poplar had diminished leaf Na⁺ but 18 increased the K^+ supply under salt stress (Langenfeld-Heyser et al., 2007; Luo et al., 19 2009). Unexpectedly, we found that NAU-colonized plants exhibited a higher ability 20 to maintain K^+/Na^+ homeostasis than MAJ, though NAU does form a Hartig net with 21 poplar and ensheathes the root tip with a loose mycelial network (Supplemental Fig. 22 S2; Gafur et al., 2004). Thus, the formation of a physical barrier by the mantel formed 23 by MAJ is likely not involved in modifying salt uptake. The increased capacity for ion 24 balance control in the salt-sensitive host plant, which was promoted by fungal 25 colonization, was probably due to the modulation of transport systems.

- 26
- 27

EMs Enhance Na⁺ Extrusion

The reduction in shoot Na⁺ uptake has been suggested to be an important
 resistance mechanism in ectomycorrhizal plants growing in salinized soil (Muhsin and

1	Zwiazek, 2002; Nguyen et al., 2006). Leaf Na ⁺ in mycorrhizal poplar was 6% (MAJ)
2	and 76% (NAU) lower than in non-mycorrhizal plants after 1 week of exposure to 50
3	mм NaCl (Fig. 1), which is in agreement with our previous findings (Langenfeld-
4	Heyser et al., 2007). Similarly, the ectomycorrhizal fungi Hebeloma crustuliniforme
5	and Laccaria bicolor has been shown to reduce tissue Na ⁺ concentrations and
6	alleviate salt injury in several conifers (Muhsin and Zwiazek, 2002; Nguyen et al.,
7	2006). The diminished buildup of salt in shoots is likely the result of salt uptake and
8	transport restriction in roots (Chen et al., 2002a, 2003). Our SIET data show that the
9	salt-induced entry of Na^+ was markedly impeded in EM plants, especially in NAU-
10	colonized roots (Figs. 2 and 3). The same trend was shown in fungal hyphae, which
11	exhibited a steady Na^+ efflux under ST and LT stress. As amiloride, a Na^+/H^+
12	antiporter inhibitor, reduced Na^+ efflux in the salt-treated mycelia of both strains (Fig.
13	4), our data suggest that <i>P. involutus</i> contributed to active Na ⁺ extrusion in the
14	salinized roots of <i>Populus</i> \times <i>canescens</i> .
15	Notably, the salt-enhanced Na^+ efflux was always associated with an H^+ influx
16	into EM roots (Figs. 2, 3, 5, and 6), whereas EM roots exhibited a net H^+ efflux in the
17	absence of salt stress (Figs. 5 and 6). The H^+ efflux in EM roots apparently resulted
18	from the root-ensheathing fungus as MAJ and NAU hyphae exhibited an evident $\mathrm{H}^{\scriptscriptstyle +}$
19	efflux (Fig. 6). Our data agree with the findings of Ramos et al. (2009), who reported
20	significant H^+ efflux from <i>Eucalyptus globulus</i> roots (the apex, meristematic, and
21	elongation zones) colonized with <i>Pisolithus</i> sp. The mycorrhiza-stimulated H^+ efflux
22	is due to the activity of PM H ⁺ -ATPase in the ectomycorrhizal associations. In the
23	roots of Pinus sylvestris-Laccaria laccata, Lei and Dexheimer (1988) showed the
24	localization of ATPase activity along the Hartig net hyphal plasma membranes and
25	plasma membranes of contiguous living cortical cells. AM mycorrhizal symbioses
26	induced the expression of two genes (<i>pma2</i> and <i>pma4</i>) responsible for de-novo H^+ -
27	ATPase activity in the periarbuscular membrane of invaded cells (Gianinazzi-Pearson
28	et al., 2000). Some host PM H ⁺ -ATPase isoforms show high activity in arbuscular
29	mycorrhizal associations (Ramos et al., 2005; Rosewarne et al., 2007). In addition,
30	three PM H ⁺ -ATPase genes (LHA1, LHA2, and LHA4) were found to be regulated by

1 arbuscular mycorrhiza in tomato plants (Ferrol et al., 2002). The molecular analysis of 2 ATPases in EM roots appears to be missing. In our study, salt exposure reversed the 3 rectification of H^+ from efflux to influx in the EM roots of poplar (Figs. 5 and 6). In 4 accordance, the H^+ efflux from hyphae was diminished by various salt treatments (SS, 5 ST, and LT, with a few exceptions) or shifted to a net influx during the period of 6 recording. In the presence of an inhibitor of the PM proton pump, sodium 7 orthovanadate, the salt-enhanced Na^+ efflux was reduced in the two strains (Fig. 4). 8 Taken together, the data suggest that colonization with *P. involutus* stimulates the H⁺-9 ATPase activity in *Populus* \times *canescens*-ectomycorrhizal associations, which pumps 10 protons to promote the secondary active Na^+/H^+ antiport at the PM (Blumwald et al., 11 2000; Zhu, 2003). We have noticed that under salt exposure the efflux of H^+ was not equivalent to the influx of Na⁺. The flux inconsistency of Na⁺ and H⁺ is mainly due to 12 13 the superimposition of two effects: salt-induced H⁺ excretion, as salinity stress is 14 usually associated with increased H^+ efflux and at the same time, higher SOS1 Na⁺/H⁺ exchanger activity of EM plants that leads to an accelerated H^+ uptake. As such, the 15 16 net H^+ flux will not be changed.

For Na⁺ flux measurements, special attentions need to be paid to Na⁺ 17 18 microelectrodes because of non-ideal selectivity of the commercially available Na⁺ 19 LIX (Chen et al. 2005). Na⁺ electrodes produced signals when we calibrated Na⁺ LIX in a range of K^+ or Ca^{2+} standards, in accordance to the finding by Chen et al. (2005). 20 21 To reduce interfering effects of K^+ on Na^+ flux, K^+ was omitted from the bathing medium (Cuin et al. 2011). In our study, Ca^{2+} and K^+ concentrations in the measuring 22 23 solution were set to low concentrations, 0.1 mM and 0.5 mM, respectively. To estimate the interference of K⁺ and Ca²⁺ on Na⁺ flux in plant materials, we measured root Na⁺ 24 flux in control and salinized P. canescens plants (50 mM NaCl for 24 h) in the 25 presence and absence of interfering ions (K^+ , Ca^{2+}). We found that 0.5 mM K^+ and 0.1 26 mM Ca^{2+} had no significant effects on root Na⁺ flux in no-salt controls (data not 27 shown). However, in salt-treated roots, the absence of K^+ and Ca^{2+} in measuring 28 29 buffer resulted in higher signals but did not change the tendency of root flux (data not shown). We found that the detected Na⁺ signals in salinized roots were unstable and 30

1	fluctuated greatly during the period of recording. This is presumably the plant
2	response to nutrient deficiency in the root medium. In our study, the presence of $K^{\scriptscriptstyle +}$
3	and Ca^{2+} may not affect the accuracy of our conclusions relating to Na^+ fluxes in
4	mycorrhizal roots and axenic EM cultures. The experimental evidence and
5	explanations are briefly listed below. (1) Na^+ electrodes exhibited much higher
6	selectivity for Na^+ relative to K^+ and Ca^{2+} in the presence of both Na^+ and interfering
7	ions (Supplemental Table S1). Moreover, the released Na ⁺ from salinized mycorrhizal
8	roots and hyphae would increase the ratio of Na^+ to K^+ and Ca^{2+} near the electrode,
9	thus increasing the selectivity of Na^+ electrode during the period of recording. (2)
10	Treatment of amiloride (an inhibitor of Na^+/H^+ antiporter) significantly decreased the
11	Na ⁺ efflux in axenic mycelia (Fig. 4), suggesting that the detected signals were largely
12	carried by Na^+ across the plasma membrane. (3) The different trends of Na^+ , K^+ and
13	$Ca^{2\scriptscriptstyle +}$ fluxes suggest that the selectivity of $Na^{\scriptscriptstyle +}$ LIX was sufficient for $Na^{\scriptscriptstyle +}\!/K^{\scriptscriptstyle +}$ and
14	Na ⁺ /Ca ²⁺ discriminations. Salinized axenic mycelia exhibited an outward rectification
15	of Na^+ and K^+ but with different patterns with increasing the NaCl concentrations
16	(Figs. 3 and 8). Salt treatment caused an evident Na^+ efflux in EM cultures, while the
17	detected Ca ²⁺ efflux was low and an inward rectification was usually seen in salinized
18	mycelia (Figs. 3 and 10). Salinity induced an evident Ca ²⁺ efflux in mycorrhizal roots,
19	whereas there was no equivalent Na^+ flux corresponding to the Ca^{2+} efflux in these
20	roots (Figs. 2, 3, 9 and 10).

- 21
- 22

EM Ameliorates K⁺ Homeostasis

23 In our study, K⁺ concentrations in the roots and leaves were reduced by salt 24 treatment to a lesser extent in mycorrhizal plants than NM plants. This finding agrees 25 with the results of Langenfeld-Heyser et al. (2007), who found that MAJ-mycorrhizal 26 plants contained higher leaf K^+ levels than non-EM plants. Our studies show that P. 27 *involutus* fungi assist host plants in the maintenance of K⁺ homeostasis by delivering 28 the nutrient to the plant and slowing the loss of K⁺ under NaCl stress. Zhang et al. (2008) reported that *P. involutus* mycelium, especially strain MAJ, increased the 29 30 uptake of K⁺ after exposure to salt treatment. Salt shock caused an instantaneous

1	influx of K^+ into the fungal mycelium; however, ST- and LT-stressed hyphae exhibited
2	a K ⁺ efflux (Fig. 8). Our data indicate that prolonged NaCl treatment resulted in K ⁺
3	loss from <i>P. involutus</i> . Currently, we cannot conclude that K^+ efflux is mediated by
4	cation channels, though the K^+ efflux caused by NaCl (400 mM) was significantly
5	reduced by the K^+ channel blocker (TEA) in the two tested strains (Fig. 4). The high
6	rate of K^+ efflux detected in the control and salinized mycelia (ST and LT) relates, to
7	some extent, to the concentrations of the K^+ sources (Fig. 8). The enriched K^+ in
8	ectomycorrhizal hyphae is thought to be transferred to the host during the period of
9	salt treatment, which caused a lesser reduction of $K^{\scriptscriptstyle +}$ in the roots and leaves of EM
10	plants (Fig. 1). Rygiewicz and Bledsoe (1984) reported that external hyphae in EM
11	symbiosis have a high capacity to take up K^+ and deliver the nutrient to the host plant.
12	In addition to stimulating K ⁺ uptake, <i>P. involutus</i> colonization benefits the salinized
13	hosts by slowing down the rate of K^+ loss. Steady and transient flux data for poplar
14	roots indicate that the salt-induced K ⁺ efflux was decreased by P. involutus
15	colonization (Figs. 7 and 8). The reduced rate of K^+ efflux in ST- and LT-treated EM
16	roots is partly the result of a delayed K^+ loss from inner host cells. In the fungus
17	ensheathed roots, K^+ in the compatible (MAJ) or incompatible (NAU) hyphae was
18	replaced by Na^+ before K^+ exchange with the root cells of the host was expected.
19	Moreover, the released Ca^{2+} ions that are replaced by Na^+ can assist plants in
20	maintaining K ⁺ homeostasis under salt stress.

- 21
- 22

Mediation of Ca²⁺ in K⁺/Na⁺ Homeostasis in EM Plants

In our study, ectomycorrhizal *Populus* \times *canescens* plants exhibited an 23 enhanced Ca^{2+} uptake ability in the absence of salinity stress (Fig. 1). The Ca^{2+} 24 enrichment was caused by colonization with P. involutus because the mycelium also 25 displayed a stable Ca^{2+} influx under these conditions (Fig. 10). Similarly, the EM 26 roots of Eucalyptus globules colonized by Pisolithus sp. exhibit a high uptake 27 capacity for Ca²⁺ from the external medium (Ramos et al., 2009). Transient and steady 28 flux measurements of mycorrhizal roots revealed a significant Ca²⁺ efflux under salt 29 stress, suggesting that the Ca^{2+} accumulated in mycorrhizal roots could be replaced by 30

1	Na ⁺ (Figs. 9 and 10). The salt-induced Ca ²⁺ flux may originate from the cell wall (Arif
2	et al., 1995, Shabala and Newman, 2000); LaCl ₃ , an inhibitor of Ca ²⁺ -permeable
3	channels, did not markedly restrict the high rate of Ca ²⁺ efflux from salt-shocked MAJ
4	and NAU roots (Supplemental Fig. S1). A large amount of cell wall Ca ²⁺ has been
5	shown to be exchangeable in mycorrhizal roots (Peterson and Enstone, 1996; Kuhn et
6	al., 2000; Bücking et al., 2002). The increase in leaf Ca^{2+} as a consequence of NaCl
7	treatment indicates that the root-derived element could be transported to the shoots in
8	addition to being released from the root surface. Thus, freed Ca ²⁺ is able to assist
9	plants in ameliorating the $K^{\!\!\!\!\!\!/}\!/Na^{\!$
10	DA-NSCCs to reduce K^+ efflux in Arabidopsis under saline conditions (Shabala et al.,
11	2006a; Sun et al., 2009b). Exogenous Ca^{2+} improved the K ⁺ /Na ⁺ balance by inhibiting
12	K^{+} efflux and increasing the apparent Na ⁺ efflux in <i>Populus</i> × <i>canescens</i> roots (Fig.
13	11). These results are consistent with our previous findings in non-mycorrhizal roots
14	of another salt-sensitive poplar, P. popularis (Sun et al., 2009b). Therefore, we
15	conclude that the increased availability of free $\mbox{Ca}^{2+}\!,$ which was released by $\mbox{Ca}^{2+}\!/\mbox{Na}^{+}$
16	exchange from EM roots, favored the establishment of K^+/Na^+ homeostasis in
16 17	exchange from EM roots, favored the establishment of K^+/Na^+ homeostasis in <i>Populus</i> × <i>canescens</i> under salt treatment.
	-
17	$Populus \times canescens$ under salt treatment.
17 18	Populus × canescens under salt treatment. Differences in K^+/Na^+ maintenance between MAJ- and NAU-colonized roots
17 18 19	Populus × canescens under salt treatment. Differences in K ⁺ /Na ⁺ maintenance between MAJ- and NAU-colonized roots are clear (Fig. 1), which might have resulted from differences in the release of
17 18 19 20	$Populus \times canescens \text{ under salt treatment.}$ Differences in K ⁺ /Na ⁺ maintenance between MAJ- and NAU-colonized roots are clear (Fig. 1), which might have resulted from differences in the release of exchangeable Ca ²⁺ from mycorrhizal associations. MAJ-mycorrhizal roots lost a large
17 18 19 20 21	Populus × canescens under salt treatment.Differences in K ⁺ /Na ⁺ maintenance between MAJ- and NAU-colonized rootsare clear (Fig. 1), which might have resulted from differences in the release ofexchangeable Ca^{2+} from mycorrhizal associations. MAJ-mycorrhizal roots lost a largeamount of Ca^{2+} after being subjected to salt shock (Fig. 10), whereas NAU-colonized
17 18 19 20 21 22	Populus × canescens under salt treatment.Differences in K ⁺ /Na ⁺ maintenance between MAJ- and NAU-colonized rootsare clear (Fig. 1), which might have resulted from differences in the release ofexchangeable Ca^{2+} from mycorrhizal associations. MAJ-mycorrhizal roots lost a largeamount of Ca^{2+} after being subjected to salt shock (Fig. 10), whereas NAU-colonizedroots exhibited a long-sustained release of free Ca^{2+} during ST and LT salt treatment
17 18 19 20 21 22 23	Populus × canescens under salt treatment.Differences in K ⁺ /Na ⁺ maintenance between MAJ- and NAU-colonized rootsare clear (Fig. 1), which might have resulted from differences in the release ofexchangeable Ca ²⁺ from mycorrhizal associations. MAJ-mycorrhizal roots lost a largeamount of Ca ²⁺ after being subjected to salt shock (Fig. 10), whereas NAU-colonizedroots exhibited a long-sustained release of free Ca ²⁺ during ST and LT salt treatment(Figs. 9 and 10). Consequently, the Ca ²⁺ ions released from the mycorrhizal
 17 18 19 20 21 22 23 24 	Populus × canescens under salt treatment.Differences in K ⁺ /Na ⁺ maintenance between MAJ- and NAU-colonized rootsare clear (Fig. 1), which might have resulted from differences in the release ofexchangeable Ca ²⁺ from mycorrhizal associations. MAJ-mycorrhizal roots lost a largeamount of Ca ²⁺ after being subjected to salt shock (Fig. 10), whereas NAU-colonizedroots exhibited a long-sustained release of free Ca ²⁺ during ST and LT salt treatment(Figs. 9 and 10). Consequently, the Ca ²⁺ ions released from the mycorrhizalassociations would benefit inner root cells controlling K ⁺ /Na ⁺ homeostasis in terms of
 17 18 19 20 21 22 23 24 25 	Populus × canescensunder salt treatment.Differences in K ⁺ /Na ⁺ maintenance between MAJ- and NAU-colonized rootsare clear (Fig. 1), which might have resulted from differences in the release ofexchangeable Ca^{2+} from mycorrhizal associations. MAJ-mycorrhizal roots lost a largeamount of Ca^{2+} after being subjected to salt shock (Fig. 10), whereas NAU-colonizedroots exhibited a long-sustained release of free Ca^{2+} during ST and LT salt treatment(Figs. 9 and 10). Consequently, the Ca^{2+} ions released from the mycorrhizalassociations would benefit inner root cells controlling K ⁺ /Na ⁺ homeostasis in terms ofthe effects of Ca^{2+} on K ⁺ and Na ⁺ fluxes in <i>Populus × canescens</i> roots. We noticed
 17 18 19 20 21 22 23 24 25 26 	Populus × canescens under salt treatment. Differences in K ⁺ /Na ⁺ maintenance between MAJ- and NAU-colonized roots are clear (Fig. 1), which might have resulted from differences in the release of exchangeable Ca ²⁺ from mycorrhizal associations. MAJ-mycorrhizal roots lost a large amount of Ca ²⁺ after being subjected to salt shock (Fig. 10), whereas NAU-colonized roots exhibited a long-sustained release of free Ca ²⁺ during ST and LT salt treatment (Figs. 9 and 10). Consequently, the Ca ²⁺ ions released from the mycorrhizal associations would benefit inner root cells controlling K ⁺ /Na ⁺ homeostasis in terms of the effects of Ca ²⁺ on K ⁺ and Na ⁺ fluxes in <i>Populus × canescens</i> roots. We noticed that MAJ-mycorrhizal roots displayed a significant Ca ²⁺ efflux under salt stress;
 17 18 19 20 21 22 23 24 25 26 27 	<i>Populus</i> × <i>canescens</i> under salt treatment. Differences in K ⁺ /Na ⁺ maintenance between MAJ- and NAU-colonized roots are clear (Fig. 1), which might have resulted from differences in the release of exchangeable Ca ²⁺ from mycorrhizal associations. MAJ-mycorrhizal roots lost a large amount of Ca ²⁺ after being subjected to salt shock (Fig. 10), whereas NAU-colonized roots exhibited a long-sustained release of free Ca ²⁺ during ST and LT salt treatment (Figs. 9 and 10). Consequently, the Ca ²⁺ ions released from the mycorrhizal associations would benefit inner root cells controlling K ⁺ /Na ⁺ homeostasis in terms of the effects of Ca ²⁺ on K ⁺ and Na ⁺ fluxes in <i>Populus</i> × <i>canescens</i> roots. We noticed that MAJ-mycorrhizal roots displayed a significant Ca ²⁺ efflux under salt stress; however, a net Ca ²⁺ influx was usually recorded in the fungal mycelium of this strain

- 1 the inner root cells might have been more accessible to Na⁺ because MAJ forms a
- 2 typical Hartig net with the roots of *Populus* × *canescens*, whereas NAU exhibits cell
- 3 wall thickening (Supplemental Fig. S2; Gafur et al., 2004).
- 4

1 MATERIALS AND METHODS

2	Plant and Fungal Cultures for Ectomycorrhizal Colonization
3	The EM fungi used in this study were the Paxillus involutus isolates MAJ and
4	NAU. Plants, fungal cultures, and the technique for synthesizing ectomycorrhizae
5	followed the procedures described by Gafur et al. (2004). In brief, the two isolates
6	were grown on 2% modified Melin Norkrans (MMN) agar medium [the medium
7	contains the following components in $g \cdot L^{-1}$: KH ₂ PO ₄ 0.5, (NH ₄) ₂ SO ₄ 0.25,
8	MgSO ₄ ·7H ₂ O 0.15, CaCl ₂ ·2H ₂ O 0.05, NaCl 0.025, FeCl ₃ ·6H ₂ O 0.01, thiamine HCl
9	0.0001, glucose 10, malt extract 3, pH 5.0] (Gafur et al., 2004). After fungal
10	inoculation, the Petri dishes (diameter 90 mm) were sealed with a strip of $Parafilm^{TM}$
11	and kept in permanent darkness at 23°C.
12	In this study, we used a Petri dish culture system for the colonization of
13	Populus × canescens with the P. involutus strains MAJ and NAU (Gafur et al., 2004).
14	In brief, regenerated plantlets of <i>Populus</i> \times <i>canescens</i> were grown for 2 to 3 weeks on
15	Murashige and Skoog (MS) rooting medium. The fungi were pre-grown on the agar
16	culture medium for 1 week prior to colonization. Vigorous plantlets with sufficient
17	roots were used for ectomycorrhization. Rooted plantlets from sterile culture were
18	carefully freed from agar particles. Rooted plantlets were placed on the MMN agar
19	medium in the presence or absence of ectomycorrhizal mycelium. During the period
20	of incubation, the room temperature was $24\pm1^{\circ}$ C with a light period of 14 h (6:00-
21	20:00). Photosynthetic active radiation of 200 μ mol m ⁻² s ⁻¹ was supplied by cool white
22	fluorescent lamps. Root-fungal associations were formed during one month after
23	colonization. All plantlets exhibited well-developed shoots and roots (Supplemental
24	Fig. S2, A-C). Some leaves at lower shoots became dry at the tips (Supplemental Fig.
25	S2, A-C). Samples of EM- and NM root tips for anatomical investigations were
26	embedded, stained and photographed as previously described (Gafur et al., 2004).
27	Anatomical analyses of mycorrhizal roots showed that the hyphae of strain MAJ
28	penetrated into the cell walls of the cortex, whereas NAU hyphae were only detected

1 on the outer epidermal cell walls (Supplemental Fig. S2, G-I). Uniform mycorrhizal 2 and non-mycorrhizal plants were used for acclimation and salt treatment. 3 4 **Liquid Culture of Fungi** 5 Liquid culture of *P. involutus* was grown at the College of Biological Sciences 6 and Technology, Beijing Forestry University (China). Strains MAJ and NAU were 7 obtained from the Büsgen Institute: Institute of Forest Botany and Tree Physiology, 8 Göttingen University (Germany). For liquid culture, agar was absent and the medium 9 was buffered with citrate (Ott et al., 2002). Mycelium from the agar plate was 10 homogenized, transferred into 150 mL of liquid medium in flasks, and incubated on a 11 rotary shaker in darkness (150 r/min, 23°C) (Langenfeld-Heyser et al., 2007). P. 12 involutus in submerged culture grew in the form of compact spherical masses of 13 mycelium (pellets). For salt treatment, sterile filtered NaCl solutions were added to 14 achieve final concentrations of 0, 50, 100, 200, or 400 mM. After short-term (ST, 24 h) 15 or long-term (LT, 7 d) treatment, axenic cultures of MAJ and NAU were used for 16 steady flux measurements of Na⁺, H⁺, K⁺, and Ca²⁺. 17 18 **Plant Acclimation and Salt Treatments** 19 Prior to salt treatment, mycorrhizal and non-mycorrhizal plants were carefully 20 removed from MMN agar medium, planted in individual pots containing fine sand, 21 and grown in a greenhouse at the College of Biological Sciences and Technology, 22 Beijing Forestry University, China. The room temperature was $24\pm1^{\circ}C$ with a light 23 period of 14 h (6:00-20:00), and photosynthetic active radiation of 200 μ mol m⁻² s⁻¹ 24 was supplied by cool white fluorescent lamps. Mycorrhizal and non-mycorrhizal 25 plantlets were exposed to 50 mM NaCl for ST (24h) or LT (7d). The required NaCl 26 concentrations were added to the LN nutrient solution (Langenfeld-Heyser et al., 27 2007). Control plantlets received LN solution without NaCl. On days 1 and 7, roots 28 with apices of 1-2 cm were sampled from mycorrhizal and non-mycorrhizal plants and used for steady state measurements of the net Na⁺, H⁺, K⁺, and Ca²⁺ fluxes. At the 29

30 final harvest, leaf segments (2-3 mm long and 1-2 mm wide) and root segments with

1	1.0 cm apices were sampled from mycorrhizal and non-mycorrhizal plantlets, freeze-
2	dried, and used for X-ray microanalysis with a scanning electron microscope
3	equipped with an energy dispersive X-ray spectrometer (SEM-EDAX).
4	
5	CaCl ₂ Treatment
6	Plantlets of <i>Populus</i> × <i>canescens</i> were multiplied by micropropagation as
7	described by Leplé et al. (1992). Rooted plantlets were cultivated in hydroponic LN-
8	nutrient solutions with low nitrogen supply (Gafur et al., 2004). To acclimate the
9	plants to ambient conditions, plantlets were covered with plastic bags and illuminated
10	with low light (50 μ mol m ⁻² s ⁻¹) supplied by cool white fluorescent lamps. The plastic
11	bags were gradually opened over 1 week. Acclimated plants were subjected to NaCl
12	(50 mM) or NaCl (50 mM) plus $CaCl_2$ (10 mM). The required amount of NaCl and
13	CaCl ₂ was added to the nutrient solution. Control plants were treated in the same
14	manner without the addition of NaCl. Plants were continuously aerated by passing air
15	to hydroponic LN-nutrient solution, which was regularly renewed. Steady fluxes of
16	K^{+} and Na^{+} in meristematic, elongation, and maturation zones were measured after 24
17	h and 7 days of treatment.
18	
19	Inhibitor Treatments
20	ST-treated (400 mM NaCl) P. involutus isolates MAJ and NAU were subjected
21	to sodium orthovanadate (500 μ M), amiloride (50 μ M), or tetraethylammonium
22	chloride (TEA, 50 μ M) for 30 min in the measuring solutions. Prior to recording Na ⁺
23	flux, the measuring solutions containing sodium orthovanadate were replaced with 10

- mL of fresh solution, but the measuring solution with amiloride and TEA was not
 renewed (amiloride and TEA had no clear effect on the Nernstian slopes of Na⁺ and
 K⁺ electrodes) (Sun et al., 2009a, 2009b). Steady-state fluxes of Na⁺ (orthovanadate or
 amiloride treatment) and K⁺ (TEA treatment) were measured in axenic mycelia
- 28 (pelleted hyphae) pre-treated with or without inhibitors at pH 6.0.
- 29

30 Steady State Measurements of Net Na⁺, H⁺, K⁺, and Ca²⁺ Fluxes

1	The net fluxes of Na ⁺ , H ⁺ , K ⁺ , and Ca ²⁺ in roots and mycelia were measured
2	using a non-invasive scanning ion-selective electrode technique (SIET, BIO-001A,
3	Younger USA Sci. & Tech. Corp., Amherst, MA) (Xu et al., 2006; Sun et al., 2009a,
4	2009b). The concentration of the ions and concentration gradients were measured by
5	moving the ion-selective microelectrode between two positions close to the materials
6	in a preset excursion (30 μ m) at a programmable frequency in the range of 0.3-0.5 Hz.
7	Ion-selective microelectrodes for the target ions were calibrated prior to flux
8	measurements: (1) Na ⁺ : 0.1, 0.5, 1.0 mM (Na ⁺ concentration was usually 0.1 mM in
9	the measuring buffer for roots and axenic mycelia); (2) H ⁺ : pH 4.0, 5.0, 6.0 (pH was
10	5.0 in the measuring buffer); (3) K^+ : 0.1, 0.5, 1.0 mM (K^+ was 0.5 mM in the
11	measuring buffer), and (4) Ca^{2+} : 0.1, 0.5, 1.0 mM (Ca^{2+} was 0.5 mM in the measuring
12	buffer). All electrodes that used for steady and transient recordings were usually
13	corrected 2-3 times by calibrations during the experiments. The ion flux rate was
14	calculated using Fick's law of diffusion:
15	J=-D(dc/dx),
16	where J is the ion flux in the x direction, dc represents the ion concentration
17	difference, dx is the microelectrode movement between two positions, dc/dx is the ion
18	
	concentration gradient, and D represents the ion diffusion coefficient in a particular
19	concentration gradient, and D represents the ion diffusion coefficient in a particular medium.
19 20	
	medium.
20	medium. <i>Flux oscillations</i>
20 21	medium. <i>Flux oscillations</i> Rhythmic (ultradian) flux oscillations are ubiquitous in the measured plant
20 21 22	medium. <i>Flux oscillations</i> Rhythmic (ultradian) flux oscillations are ubiquitous in the measured plant species (Toko et al., 1990; Souda et al., 1990; Shabala et al., 1997, 2003, 2006b;
20 21 22 23	medium. <i>Flux oscillations</i> Rhythmic (ultradian) flux oscillations are ubiquitous in the measured plant species (Toko et al., 1990; Souda et al., 1990; Shabala et al., 1997, 2003, 2006b; Shabala and Knowles, 2002). H ⁺ flux oscillations have been widely reported in a
20 21 22 23 24	medium. <i>Flux oscillations</i> Rhythmic (ultradian) flux oscillations are ubiquitous in the measured plant species (Toko et al., 1990; Souda et al., 1990; Shabala et al., 1997, 2003, 2006b; Shabala and Knowles, 2002). H ⁺ flux oscillations have been widely reported in a variety of plant species. In our study, oscillations in the H ⁺ flux in poplar roots were
 20 21 22 23 24 25 	medium. <i>Flux oscillations</i> Rhythmic (ultradian) flux oscillations are ubiquitous in the measured plant species (Toko et al., 1990; Souda et al., 1990; Shabala et al., 1997, 2003, 2006b; Shabala and Knowles, 2002). H ⁺ flux oscillations have been widely reported in a variety of plant species. In our study, oscillations in the H ⁺ flux in poplar roots were not as noticeable as in herbaceous species. The H ⁺ oscillations were more like
 20 21 22 23 24 25 26 	medium. <i>Flux oscillations</i> Rhythmic (ultradian) flux oscillations are ubiquitous in the measured plant species (Toko et al., 1990; Souda et al., 1990; Shabala et al., 1997, 2003, 2006b; Shabala and Knowles, 2002). H ⁺ flux oscillations have been widely reported in a variety of plant species. In our study, oscillations in the H ⁺ flux in poplar roots were not as noticeable as in herbaceous species. The H ⁺ oscillations were more like fluctuations, and oscillations in the Na ⁺ , K ⁺ , and Ca ²⁺ fluxes displayed similar trends
 20 21 22 23 24 25 26 27 	medium. <i>Flux oscillations</i> Rhythmic (ultradian) flux oscillations are ubiquitous in the measured plant species (Toko et al., 1990; Souda et al., 1990; Shabala et al., 1997, 2003, 2006b; Shabala and Knowles, 2002). H ⁺ flux oscillations have been widely reported in a variety of plant species. In our study, oscillations in the H ⁺ flux in poplar roots were not as noticeable as in herbaceous species. The H ⁺ oscillations were more like fluctuations, and oscillations in the Na ⁺ , K ⁺ , and Ca ²⁺ fluxes displayed similar trends as H ⁺ (Supplemental Fig. S3). This finding is presumably due to a lower growth rate

1	data show that the oscillatory periods of measured ions (H^+ , Na^+ , K^+ , and Ca^{2+}) in
2	poplar roots are usually in the range of several minutes. In our scanning studies,
3	fluxes were recorded for 8-10 min at each point, which is long enough to ensure the
4	absence of oscillations.
5	Ion selectivity of Na ⁺ electrodes
6	We found that Na^+ microelectrodes were not able to record Na^+ flux in a
7	measuring buffer containing high Na^+ due to the low signal/noise (S/N) ratio of Na^+
8	LIX (Fluka 71178; Sun et al., 2009). Na ⁺ -selective microelectrodes were also found to
9	be unsuitable for screening Na^+ fluxes because of the non-ideal selectivity of the
10	commercially available Na^+ LIX (Chen et al., 2005). K^+ was omitted from the bathing
11	medium to reduce the interfering effects of K^+ on Na^+ flux (Cuin et al., 2011). To
12	determine the interfering effects of K^+ and Ca^{2+} on Na^+ -selective electrodes, Na^+ -
13	selective microelectrodes were calibrated in Na^+ solution (0.1, 0.5, 1.0 mM) in the
14	presence or absence of K^+ (0.1, 0.5, 1.0 mM) and Ca^{2+} (0.1, 0.5, 1.0 mM). The
15	calibration characteristics (Nernst slope) of the Na^+ electrode was not altered by the
16	interfering K^+ ion (concentration range 0.1 to 1.0 mM; Supplemental Table S1). In the
17	presence of Ca^{2+} , the Nernst slope of the Na ⁺ electrodes was reduced, up to 24% at 1.0
18	mM Ca^{2+} (Supplemental Table S1). To reduce the interfering effects of Ca^{2+} on Na^{+}
19	electrodes, the Ca^{2+} concentration in the measuring solution was set to 0.1 mm. The
20	Nernst slope and intercept of the Na^+ electrodes in the measuring solution (0.5 mM
21	KCl, 0.1 mM NaCl, 0.1 mM CaCl ₂ , 0.1 mM MgCl ₂) were 50.0031±1.9249 and
22	73.1593 \pm 0.6543, similar to the values in the absence of K ⁺ and Ca ²⁺ (Nernst slope:
23	55.7648±1.9751, Nernst intercept: 75.9074±1.8814).
24	
25	Experimental Protocols for SIET Measurements

Roots sampled from mycorrhizal and non-mycorrhizal plants and mycelial
hyphae collected from the liquid culture medium were rinsed with distilled water and
incubated in the basic measuring solution (0.5 mM KCl, 0.1 mM NaCl, 0.1 mM CaCl₂,
0.1 mM MgCl₂) to equilibrate for 30 min. To record the Na⁺ flux in mycelial hyphae,
the axenic EM cultures (pelleted form) were equilibrated for 60 min to reach a stable

1 flux rate (Supplemental Fig. S4). The roots or hyphae were transferred to Petri dishes 2 containing 10 mL of fresh measuring solution. Prior to recording the flux, root and fungal samples were immobilized on the bottom. The Na⁺, H⁺, K⁺, and Ca²⁺ fluxes in 3 the roots were measured along the root apex (0-2,000 µm from the tip) at intervals of 4 5 $50 \text{ to } 300 \text{ }\mu\text{m}$. Ion fluxes in the mycelium were measured over a recording period of 6 30-40 min. Real-time flux measurements of NM roots, EM roots, and axenic mycelia 7 (pelleted hyphae) are shown in Supplemental Figure S5. 8 9 **Transient Flux Kinetics** 10 Mycorrhizal and non-mycorrhizal roots were sampled from non-salinized 11 plants. After equilibration to the basic measuring solution, the steady-state fluxes of H^+ , K^+ , and Ca^{2+} in the apical region (200 µm from the root apex) were recorded (5–6 12 13 min) prior to salt shock. NaCl (200 mM) was slowly added to the measuring solution 14 until the final NaCl concentration in the buffer reached 50 mm. Ion flux recording was 15 continued for 30-40 min. The effect of lanthanum chloride (200 uM) on salt shock-

- 16 induced transient Ca^{2+} kinetics was examined in the roots of mycorrhizal (MAJ and 17 NAU) and non-mycorrhizal (NM) *Populus* × *canescens* plants.
- Fungal mycelia were exposed to 0, 50, 100, 200, or 400 mM NaCl to induce
 salt shock. H⁺, K⁺, and Ca²⁺ fluxes were monitored over a continuous recording
 period of 30-40 min. For transient flux kinetics, the data measured during the first 2 to
 3 min was discarded due to the diffusion effects of stock addition.
- 22

23 X-ray Microanalysis

The samples from control and stressed plantlets were rapidly frozen in liquid nitrogen and vacuum freeze-dried at -100°C for 7 days. The freeze-dried samples were gold-coated in a high vacuum sputter coater and analyzed using a Hitachi S-3400N scanning electron microscope equipped with an energy dispersive X-ray spectrometer (EX-250, Horiba Ltd., Kyoto, Japan). Probe measurements of roots and leaves were made with a broad electron beam covering the whole cross section. The relative amount of K⁺, Na⁺, or Ca²⁺ was expressed as atomic mass fraction (%).

1	
2	Data Analysis
3	Three-dimensional ionic fluxes were calculated using MageFlux, developed by
4	Xu Yue (http://xuyue.net/mageflux). All mean data were subjected to analysis of
5	variance. Significant differences between means were determined by Duncan's
6	multiple range test. Unless otherwise stated, differences were considered significant
7	when $P < 0.05$.
8	
9	Supplemental Data
10	The following materials are available in the online version of this article.
11	Supplemental Table S1. Interfering effects of K ⁺ and Ca ²⁺ on Na ⁺ -selective
12	electrodes.
13	Supplemental Figure S1. Effects of lanthanum chloride (200 μ M) on salt shock-
14	induced transient Ca ²⁺ kinetics in the roots of mycorrhizal (MAJ and NAU) and
15	non-mycorrhizal (NM) Populus \times canescens plants.
16	Supplemental Figure S2. Ectomycorrhizal colonization of <i>Populus</i> \times <i>canescens</i> and
17	performance of mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) plants
18	under salt stress.
19	Supplemental Figure S3. Fluctuations and oscillations in the net H^+ flux in the
20	elongation zone of <i>Populus</i> \times <i>canescens</i> roots.
21	Supplemental Figure S4. Kinetics of the net Na^+ efflux in axenic mycelia of <i>P</i> .
22	involutus strains MAJ and NAU after being exposed to 400 mM NaCl for 24 h.
23	Supplemental Figure S5. Representative images showing real time flux
24	measurements of non-mycorrhizal (NM) roots, EM roots and axenically grown
25	EM cultures.
26	
27	ACKNOWLEDGMENTS
28	The Platform of Large Instruments and Equipment in Beijing Forestry
29	University is greatly acknowledged for offering the SEM-EDAX. We thank Ms. Hui

1	Zhang for her assistance in preparing samples for microanalysis and Ms. Christine
2	Kettner for plant cultivation and the provision of ectomycorrhizal poplars.
3	
4	LITERATURE CITED
5	Apse MP, Blumwald E (2007) Na ⁺ transport in plants. FEBS Lett 581 :2247–2254.
6	Arif I, Newman IA, Keenlyside N (1995) Proton flux measurements from tissues in
7	buffered solution. Plant Cell Environ 18: 1319–1324
8	Bandou E, Lebailly F, Muller F, Dulormne M, Toribio A, Chabrol J, Courtecuisse
9	R, Plenchette C, Prin Y, Duponnois R, Thiao M, Sylla S, Dreyfus B, Bâ AM
10	(2006) The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress
11	in seagrape (Coccoloba uvifera L.) seedlings. Mycorrhiza 16:559–565.
12	Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells.
13	Biochimica et Biophysica Acta 1465:140–151.
14	Bücking H, Kuhn AJ, Schröder WH, Heyser W (2002) The fungal sheath of
15	ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium,
16	magnesium, and potassium into the root cortex? J Exp Bot 53: 1659–1669.
17	Chen DM, Ellul S, Herdman K, Cairney JWG (2001) Influence of salinity on
18	biomass production by Australian Pisolithus spp. isolates. Mycorrhiza 11: 231-
19	236.
20	Chen S, Li J, Fritz E, Wang S, Hüttermann A (2002a) Sodium and chloride
21	distribution in roots and transport in three poplar genotypes under increasing NaCl
22	stress. For Ecol Manage 168: 217–230.
23	Chen S, Li J, Yin W, Wang S, Fritz E, Polle A, Hüttermann A (2002b) Tissue and
24	cellular K^+ , Ca^{2+} and Mg^{2+} of poplar under saline conditions. J Beijing For Univ
25	24 : 84–88.
26	Chen S, Li J, Wang S, Fritz E, Hüttermann A, Altman A (2003) Effects of NaCl
27	on shoot growth, transpiration, ion compartmentation and transport in regenerated
28	plants of Populus euphratica and Populus tomentosa. Can J For Res 33: 967–975.
29	Chen S, Polle A (2010) Salinity tolerance of <i>Populus</i> . Plant Biology 12: 317–333.

1	Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening
2	plants for salt tolerance by measuring K^+ flux: a case study for barley. Plant Cell
3	Environ 28: 1230–1246
4	Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I,
5	Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma
6	membrane transporters controlling K^+/Na^+ homeostasis in salt stressed barley.
7	Plant Physiol 145 : 1714–1725.
8	Corratgé C, Zimmermann S, Lambilliotte R, Plassard C, Marmeisse R, Thibaud
9	JB, Lacombe B, Sentenac H (2007) Molecular and functional characterization of
10	a Na^+ -K ⁺ transporter from the Trk family in the ectomycorrhizal fungus Hebeloma
11	cylindrosporum. J Biol Chem 282: 26057–26066.
12	Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S (2011)
13	Assessing the role of root plasma membrane and tonoplast Na^+/H^+ exchangers in
14	salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ
15	34 : 947-61
16	Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik
17	A, and Yurin V (2010) <i>Arabidopsis</i> root K^+ -efflux conductance activated by
18	hydroxyl radicals: single-channel properties, genetic basis and involvement in
19	stress-induced cell death. J Cell Sci 123: 1468–1479.
20	Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation
21	channels in plants: from salt stress to signaling and development. New Phytol 175:
22	387–404.
23	Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen
24	radicals regulate plasma membrane Ca^{2+} and K^+ -permeable channels in plant root
25	cells. J Cell Sci 116: 81-88.
26	Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels
27	in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:
28	379–387.

1	Ferrol N, Pozo MJ, Antelo M, Azcón-Aguilar C (2002) Arbuscular mycorrhizal
2	symbiosis regulates plasma membrane H ⁺ -ATPase gene expression in tomato
3	plants. J Exp Bot 53: 1683–1687.
4	Gafur A, Schützendübel A, Langenfeld-Heyser R, Fritz E, Polle A (2004)
5	Compatible and incompetent Paxillus involutus isolates for ectomycorrhiza
6	formation in vitro with Poplar (<i>Populus</i> × <i>canescens</i>) differ in H_2O_2 production.
7	Plant Biol 6 : 91–99.
8	Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000)
9	Differential activation of H ⁺ -ATPase genes by an arbuscular mycorrhizal fungus
10	in root cells of transgenic tobacco. Planta 211: 609–613.
11	Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J
12	Exp Bot 366 : 1–11.
13	Harris JM, Wais R, Long SR (2003) Rhizobium-induced calcium spiking in Lotus
14	japonicus. Mol Plant Microbe Interact 16: 335-341.
15	Hasegawa PM, Bressan RA, Zhu JK and Bohnert JH (2000) Plant cellular and
16	molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:
17	463-499.
18	Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y,
19	Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T,
20	Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi
21	M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for
22	symbiotic fungal and bacterial entry into plant roots. Nature 433: 527–531.
23	Kuhn AJ, Schröder WH, Bauch J (2000) The kinetics of calcium and magnesium
24	entry into mycorrhizal spruce roots. Planta 210: 488–96.
25	Langenfeld-Heyser R, Gao J, Ducic T, Tachd P, Lu CF, Fritz L, Gafur A, Polle A
26	(2007) Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-
27	sensitive hybrid poplar <i>Populus</i> × <i>canescens</i> . Mycorrhiza 17 : 121–131.
28	Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling
29	pathways. New Phytol 171: 249-269.

1	Lei J, Dexheimer J (1988) Ultrastructural localization of ATPase activity in the
2	Pinus sylvestris/Laccaria laccata ectomycorrhizal association. New Phytol 108:
3	329–334.
4	Leplé JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic
5	poplars: expression of chimeric genes using four different constructs. Plant Cell
6	Rep 11 :137–141.
7	Liu JP, Zhu JK (1997) An Arabidopsis mutant that requires increased calcium for
8	potassium nutrition and salt tolerance. Proc Natl Acad Sci USA 94: 14960–14964.
9	Luo Z, Janz D, Jiang X, Göbel C, Wildhagen H, Tan Y, Rennenberg H, Feussner
10	I, Polle A (2009) Upgrading root physiology for stress tolerance by
11	ectomycorrhizas: insights from metabolite and transcriptional profiling into
12	reprogramming for stress anticipation. Plant Physiol 151: 1902–1917.
13	Luo Z, Li K, Gai Y, Göbel C, Wildhagen H, Jiang X, Feußner I, Rennenberg H,
14	Polle A (2011) The ectomycorrhizal fungus (Paxillus involutus) modulates leaf
15	physiology of poplar towards improved salt tolerance. Environ Exp Bot 72: 304–
16	311.
17	Muhsin TM, Zwiazek JJ (2002) Colonization with Hebeloma crustuliniforme
18	increases water conductance and limits shoot sodium uptake in white spruce
19	(Picea glauca) seedlings. Plant Soil 238: 217–225.
20	Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol
21	59 : 651–681.
22	Nemchinov LG, Shabala L, Shabala S (2008) Calcium efflux as a component of the
23	hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae.
24	Plant Cell Physiol 49: 40–46.
25	Nguyen H, Polanco MC, Zwiazek JJ (2006) Gas exchange and growth responses of
26	ectomycorrhizal Picea mariana, Picea glauca, and Pinus banksiana seedings to
27	NaCl and Na ₂ SO ₄ . Plant Biol 8: 646–652.
28	Ott T, Fritz E, Polle A, Schützendübel A (2002) Characterisation of antioxidative
29	systems in the ectomycorrhiza-building basidiomycete Paxillus involutus
30	(Bartsch.) Fr. and its reaction to cadmium. FEMS Microbiol Ecol 42: 359–366.

1	Ottow EA, Brinker M, Teichmann T, Fritz E, Kaiser W, Brosché M, Kangasjärvi
2	J, Jiang X, Polle A (2005) Populus euphratica displays apoplastic sodium
3	accumulation, osmotic adjustment by decreases in calcium and soluble
4	carbohydrates, and develops leaf succulence under salt stress. Plant Physiology
5	139: 1762-1772
6	Polle A, Schützendübel A (2003) Heavy metal signalling in plants: linking cellular
7	and organismic responses. In: Plant Responses to Abiotic Stresses, (Eds. H. Hirt
8	and K. Shinozaki), Vol 4, Topics in Current Genetics. Springer Verlag, Berlin,
9	pp.167-215
10	Peterson CA, Enstone DE (1996) Functions of passage cells in the endodermis and
11	exodermis of roots. Physiol Plant 97: 592–598
12	Ramos AC, Façanha AR, Feijó JA (2008) Proton (H ⁺) flux signature for the
13	presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:
14	177–188
15	Ramos AC, Lima PT, Dias PN, Kasuya MCM, Feijó JA (2009) A pH signaling
16	mechanism involved in the spatial distribution of calcium and anion fluxes in
17	ectomycorrhizal roots. New Phytol 181: 448–462
18	Ramos AC, Martins MA, Façanha AR (2005) ATPase and pyrophosphatase
19	activities in corn root microsomes colonized with arbuscular mycorrhizal fungi.
20	Braz J Plant Physiol 29: 207–213
21	Rosewarne GM, Smith FA, Schachtman DP, Smith SE (2007) Localization of
22	proton-ATPase genes expressed in arbuscular mycorrhizal tomato plants.
23	Mycorrhiza 17 : 249–258
24	Rygiewicz PT, Bledsoe CS (1984) Mycorrhizal effects on potassium fluxes by
25	northwest coniferous seedlings. Plant Physiol 76: 918–923
26	Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate
27	net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825-837
28	Shabala S (2003) Physiological implications of ultradian oscillations in plant roots.
29	Plant Soil 255: 217–226

1	Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol
2	Plant 133 : 651–669.
3	Shabala S, Cuin TA, Newman IA, Shabala S (2005) Salinity-induced ion flux
4	patterns from the excised roots of Arabidopsis sos mutants. Planta 222: 1014-
5	1050.
6	Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM,
7	Newman IA (2006a) Extracellular Ca^{2+} ameliorates NaCl-induced K ⁺ loss from
8	Arabidopsis root and leaf cells by controlling plasma membrane K^+ -permeable
9	channels. Plant Physiol 141: 1653–1665.
10	Shabala S, Knowles A (2002) Rhythmic patterns of nutrient acquisition by wheat
11	roots. Funct Plant Biol 29: 595-605
12	Shabala S, Newman IA (2000) Salinity effects on the activity of plasma membrane
13	H^+ and Ca^{2+} transporters in bean leaf mesophyll: masking role of the cell wall.
14	Ann Bot (Lond) 85: 681–686
15	Shabala S, Newman IA, Morris J (1997) Oscillations in H^+ and Ca^{2+} ion fluxes
16	around the elongation region of corn roots and effects of external pH. Plant
17	Physiol 113: 111–118
18	Shabala S, Shabala L, Gradmann D, Chen Z, Newman I, Mancuso S (2006b)
19	Oscillations in plant membrane transport: model predictions, experimental
20	validation, and physiological implications. J Exp Bot 57: 171–184
21	Shabala S, Shabala L, Van Volkenburgh E (2003) Effect of calcium on root
22	development and root ion fluxes in salinized barley seedlings. Funct Plant Biol 30:
23	507–514
24	Smith SE, Read DJ (2008) Mycorrhizal synthesis, 3nd ed. San Diego, CA: Academic
25	Press.
26	Souda M, Toko K, Hayashi K, Fujiyoshi T, Ezaki S, Yamafuji K (1990)
27	Relationship between growth and electric oscillations in bean roots. Plant Physiol
28	93: 532–536
29	Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z,
30	Zhang Z, Song J, Xu Y (2009a) NaCl-induced alternations of cellular and tissue

1	ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol
2	149 : 1141–1153.
3	Sun J, Dai S, Wang R,Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z,
4	Zhang Z, Song J, Xu Y (2009b) Calcium mediates root K ⁺ /Na ⁺ homeostasis in
5	poplar species differing in salt tolerance. Tree Physiol 29: 1175–1186.
6	Sun J, Wang MJ, Ding MQ, Deng SR, Liu MQ, Lu CF, Zhou XY, Shen X, Zheng
7	XJ, Zhang ZK, Song J, Hu ZM, Xu Y, Chen SL (2010) H_2O_2 and cytosolic Ca^{2+}
8	signals triggered by the PM H^+ -coupled transport system mediate K^+/Na^+
9	homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:
10	943-958
11	Sun J, Zhang CL, Deng SR, Lu CF, Shen X, Zhou XY, Zheng XJ, Hu ZM, Chen
12	SL (2012) An ATP signalling pathway in plant cells: extracellular ATP triggers
13	programmed cell death in Populus euphratica. Plant Cell Environ 35: 893–916
14	Toko K, Souda M, Matsuno T, Yamafuji K (1990) Oscillations of electrical
15	potential along a root of a higher plant. Biophys J 57: 269–279
16	Tester M and Davenport R (2003) Na^+ tolerance and Na^+ transport in higher plants.
17	Ann Bot 91 : 503–527.
18	Xu Y, Sun T and Yin LP (2006) Application of non-invasive microsensing system to
19	simultaneously measure both $H^{\!\scriptscriptstyle +}$ and O_2 fluxes around the pollen tube. J Integr
20	Plant Biol 48: 823–831.
21	Yi H, Calvo-Polanco M, MacKinnon MD, Zwiazek JJ (2008) Responses of
22	ectomycorrhizal Populus tremuloides and Betula papyrifera seedlings to salinity.
23	Environ Exp Bot 62 : 357–363.
24	Zhang H, Li J, Chen S, Lu C, Wang R, Dai S, Zhu H, Zhang Y, Shi Y, Wang M,
25	Lu Y, Li L, Langenfeld-Heyser R, Fritz E, Polle Andrea (2008) Effect of NaCl
26	on growth and ion relations in two salt-tolerant strains of Paxillus involutus. For
27	Stud China 10 : 95–100.
28	Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6: 66–71.
29	Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol
30	6 : 1–5.

1 FIGURE LEGENDS

2

9

Figure 1. Effect of NaCl (50 mM, 1 week) on Na⁺, K⁺, Ca²⁺, K⁺/Na⁺, and Ca²⁺/Na⁺ in the leaves and roots of mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus* × *canescens* plants. Amount of K⁺, Na⁺ and Ca²⁺ was expressed as atomic mass fraction (%). Each column is the mean of three to four individual plants and bars represent the standard error of the mean. Columns labeled with asterisks indicate significant difference at P < 0.05 between control and NaCl treatments.

10Figure 2. Effects of short-term (ST) salinity (50 mM NaCl for 24 h) and long-term11(LT) salinity (50 mM NaCl for 7 d) on the net Na⁺ flux in the mycorrhizal (MAJ and12NAU) and non-mycorrhizal (NM) roots of *Populus* × *canescens* plants. Control roots13were treated without NaCl. Na⁺ fluxes were measured along root axes (0–2,000 μ m14from the apex) at intervals of 50 to 300 μ m. Each point is the mean of five to six15individual plants and bars represent the standard error of the mean. **P* < 0.05 between</td>16treatments.

17

Figure 3. Effects of NaCl on steady Na⁺ fluxes in *Populus* \times *canescens* roots (NM, 18 19 MAJ, NAU) and *P. involutus* strains MAJ and NAU. A, Mycorrhizal (MAJ and NAU) 20 and non-mycorrhizal (NM) *Populus* × *canescens* plants were subjected to short-term 21 (ST) salinity (50 mM NaCl for 24 h) and long-term (LT) salinity (50 mM NaCl for 7 22 d), respectively. Control roots were treated without NaCl. For each plant, Na⁺ fluxes 23 were measured along root axes $(0-2,000 \,\mu\text{m}$ from the apex at intervals of 50 to 300 24 μ m) and a mean value is given. Each column is the mean of five to six individual 25 plants and bars represent the standard error of the mean. Columns labeled with different letters, a, and b, indicate significant difference at P < 0.05 between NM and 26 EM roots. B and C, P. involutus isolates MAJ and NAU were subjected to ST salinity 27 28 (50, 100, 200, 400 mM NaCl for 24 h) and LT salinity (50, 100, 200, 400 mM NaCl for 29 7 d), respectively. Control axenic mycelia were treated without NaCl. Na⁺ fluxes of 30 fungus hyphae were measured over a recording period of 30-40 min and a mean value

is given. Each column is the mean of five to six axenic EM cultures (pelleted hyphae)
 and bars represent the standard error of the mean. Columns labeled with different
 letters, a, b, and c, indicate significant difference at *P* < 0.05 between salinity levels.

4

5 **Figure 4.** Effects of pharmacological agents on net Na^+ and K^+ fluxes in short-term 6 (ST)-treated P. involutus isolates MAJ and NAU. A, ST-treated (400 mM NaCl, 24 h) 7 axenic mycelia were pre-treated with 500 μ M sodium orthovanadate or 50 μ M 8 amiloride for 30 min prior to measuring Na⁺ flux. Measuring solutions containing 9 sodium orthovanadate were removed slowly with a pipette and a 10 mL fresh solution 10 was then slowly added to the measuring chamber. B, ST-treated (400 mM NaCl, 24 h) 11 axenic mycelia were pre-treated with 50 µM tetraethylammonium chloride (TEA) for 30 min prior to measuring K^+ flux. In A and B, each column is the mean of five to six 12 13 axenic EM cultures (pelleted hyphae) and bars represent the standard error of the 14 mean. Na^+ and K^+ fluxes of fungus hyphae were measured over a recording period of 15 30-40 min and a mean value is given. Columns labeled with different letters, a, and b, 16 indicate significant difference at P < 0.05 between treatments.

17

18Figure 5. Effects of short-term (ST) salinity (50 mM NaCl for 24 h) and long-term19(LT) salinity (50 mM NaCl for 7 d) on the net H+ flux in the roots of mycorrhizal20(MAJ and NAU) and non-mycorrhizal (NM) *Populus × canescens* plants. Control21roots were treated without NaCl. H+ flux was measured along root axes (0–2,000 μ m22from the apex) at intervals of 50 to 300 μ m. Each point is the mean of five to six23individual plants and bars represent the standard error of the mean. *P < 0.05 between</td>24treatments.

25

Figure 6. Effects of NaCl on steady and transient H⁺ fluxes in *Populus × canescens*roots (NM, MAJ, NAU) and *P. involutus* strains MAJ and NAU. A, Mycorrhizal
(MAJ and NAU) and non-mycorrhizal (NM) *Populus × canescens* plants were
subjected to short-term (ST) salinity (50 mM NaCl for 24 h) and long-term (LT)
salinity (50 mM NaCl for 7 d), respectively. Control roots were treated without NaCl.

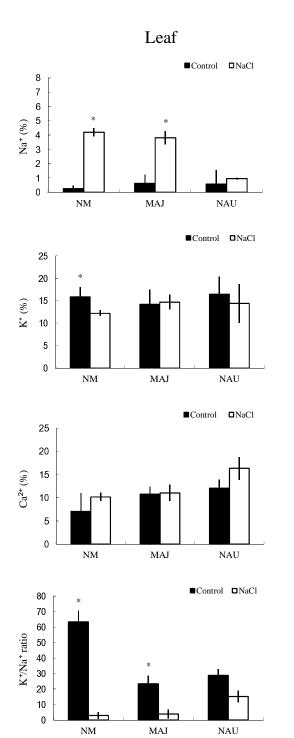
1	For each plant, $H^{\scriptscriptstyle +}$ fluxes were measured along root axes (0–2,000 μm from the apex
2	at intervals of 50 to 300 μ m) and a mean value is given. Each column is the mean of
3	five to six individual plants and bars represent the standard error of the mean.
4	Columns labeled with different letters, a, and b, indicate significant difference at $P <$
5	0.05 between NM and EM roots. B and C, P. involutus isolates MAJ and NAU were
6	subjected to ST salinity (50, 100, 200, and 400 mM NaCl for 24 h) and LT salinity (50,
7	100, 200, and 400 mM NaCl for 7 d), respectively. Control axenic mycelia were
8	treated without NaCl. H^+ fluxes of fungus hyphae were measured over a recording
9	period of 30-40 min and a mean value is given. Each column is the mean of five to six
10	axenic EM cultures (pelleted hyphae) and bars represent the standard error of the
11	mean. Columns labeled with different letters, a, b, c, and d, indicate significant
12	difference at $P < 0.05$ between salinity levels. D, Mycorrhizal (MAJ and NAU) and
13	non-mycorrhizal (NM) Populus \times canescens plants were subjected to salt shock with
14	50 mM NaCl. $H^{\scriptscriptstyle +}$ kinetics were recorded at the apex (measuring site was ca. 500 μm
15	from the root tip) after the required amount of 200 mM NaCl stock was introduced
16	into the measuring chamber. E and F, P. involutus isolates MAJ and NAU were
17	subjected to salt shock with 50 mm NaCl. H^+ kinetics of axenic mycelia were recorded
18	after the required amount of 200 mM NaCl stock was introduced into the measuring
19	chamber. Before the salt shock, steady H^+ fluxes were monitored for ca. 5 min. In D-
20	F, each point is the mean of four individual plants or axenic EM cultures (pelleted
21	hyphae) and bars represent the standard error.
22	
23	Figure 7. Effects of short-term (ST) salinity (50 mM NaCl for 24 h) and lont-term

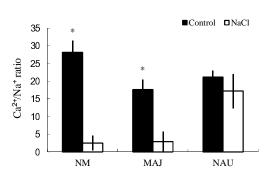
(LT) salinity (50 mM NaCl for 7 d) on net K⁺ flux in roots of mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus* × *canescens* plants. Control roots were treated without NaCl. The K⁺ flux was measured along root axes (0–2,000 μ m from the apex) at intervals of 50 to 300 μ m. Each point is the mean of five to six individual plants and bars represent the standard error of the mean. **P* < 0.05 between treatments.

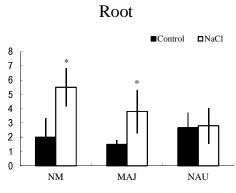
30

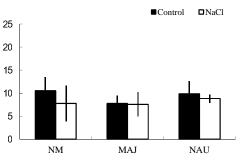
1	Figure 8. Effects of NaCl on steady and transient K^+ fluxes in <i>Populus</i> × <i>canescens</i>
2	roots (NM, MAJ, NAU) and P. involutus strains MAJ and NAU. A, Mycorrhizal
3	(MAJ and NAU) and non-mycorrhizal (NM) Populus \times canescens plants were
4	subjected to short-term (ST) salinity (50 mM NaCl for 24 h) and long-term (LT)
5	salinity (50 mM NaCl for 7 d), respectively. Control roots were treated without NaCl.
6	For each plant, $K^{\scriptscriptstyle +}$ fluxes were measured along root axes (0–2,000 μm from the apex
7	at intervals of 50 to 300 μm) and a mean value is given. Each column is the mean of
8	five to six individual plants and bars represent the standard error of the mean.
9	Columns labeled with different letters, a, and b, indicate significant difference at $P <$
10	0.05 between NM and EM roots. B and C, P. involutus isolates MAJ and NAU were
11	subjected to ST salinity (50, 100, 200, and 400 mM NaCl for 24 h) and LT salinity (50,
12	100, 200, and 400 mM NaCl for 7 d), respectively. Control axenic mycelia were
13	treated without NaCl. K^+ fluxes of fungus hyphae were measured over a recording
14	period of 30-40 min and a mean value is given. Each column is the mean of five to six
15	axenic EM cultures (pelleted hyphae) and bars represent the standard error of the
16	mean. Columns labeled with different letters, a, b, and c, indicate significant
17	difference at $P < 0.05$ between salinity levels. D, Mycorrhizal (MAJ and NAU) and
18	non-mycorrhizal (NM) Populus \times canescens plants were subjected to salt shock with
19	50 mM NaCl. $K^{\scriptscriptstyle +}$ kinetics were recorded at the apex (measuring site was ca. 500 μm
20	from the root tip) after the required amount of 200 mM NaCl stock was introduced
21	into the measuring chamber. E and F, P. involutus isolates MAJ and NAU were
22	subjected to salt shock with 50 mM NaCl. K^+ kinetics of axenic mycelia were
23	recorded after the required amount of 200 mM NaCl stock was introduced into the
24	measuring chamber. Before the salt shock, steady K^{+} fluxes were monitored for ca. 5
25	min. In D-F, each point is the mean of four individual plants or axenic EM cultures
26	(pelleted hyphae) and bars represent the standard error.
27	

Figure 9. Effects of short-term (ST) salinity (50 mM NaCl for 24 h) and long-term
(LT) salinity (50 mM NaCl for 7 d) on the net Ca²⁺ flux in the roots of mycorrhizal
(MAJ and NAU) and non-mycorrhizal (NM) *Populus × canescens* plants. Control

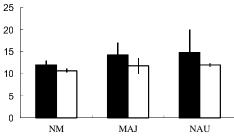

1 roots were treated without NaCl. The Ca²⁺ flux was measured along root axes (0– 2 2,000 μ m from the apex) at intervals of 50 to 300 μ m. Each point is the mean of five 3 to six individual plants and bars represent the standard error of the mean. **P* < 0.05 4 between treatments.

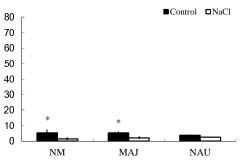

5

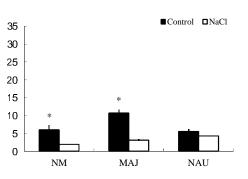

Figure 10. Effects of NaCl on steady and transient Ca^{2+} fluxes in *Populus* × 6 7 canescens roots (NM, MAJ, NAU) and P. involutus strains MAJ and NAU. A, 8 Mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) Populus × canescens plants 9 were subjected to short-term (ST) salinity (50 mM NaCl for 24 h) and long-term (LT) 10 salinity (50 mM NaCl for 7 d), respectively. Control roots were treated without NaCl. For each plant, Ca^{2+} fluxes were measured along root axes (0–2,000 µm from the apex 11 12 at intervals of 50 to 300 μ m) and a mean value is given. Each column is the mean of 13 five to six individual plants and bars represent the standard error of the mean. 14 Columns labeled with different letters, a, and b, indicate significant difference at P <0.05 between NM and EM roots. B and C, P. involutus isolates MAJ and NAU were 15 16 subjected to ST salinity (50, 100, 200, and 400 mM NaCl for 24 h) and LT salinity (50, 17 100, 200, and 400 mM NaCl for 7 d), respectively. Control axenic mycelia were treated without NaCl. Ca²⁺ fluxes of fungus hyphae were measured over a recording 18 19 period of 30-40 min and a mean value is given. Each column is the mean of five to six 20 axenic EM cultures (pelleted hyphae) and bars represent the standard error of the 21 mean. Columns labeled with different letters, a, b, c, indicate significant difference at 22 P < 0.05 between salinity levels. D, Mycorrhizal (MAJ and NAU) and non-23 mycorrhizal (NM) Populus \times canescens plants were subjected to salt shock with 50 mM NaCl. Ca^{2+} kinetics were recorded at the apex (measuring site was ca. 500 um 24 25 from the root tip) after the required amount of 200 mM NaCl stock was introduced 26 into the measuring chamber. E and F, P. involutus isolates MAJ and NAU were subjected to salt shock with 50 mM NaCl. Ca^{2+} kinetics of axenic mycelia were 27 recorded after the required amount of 200 mM NaCl stock was introduced into the 28 measuring chamber. Before the salt shock, steady Ca^{2+} fluxes were monitored for ca. 29

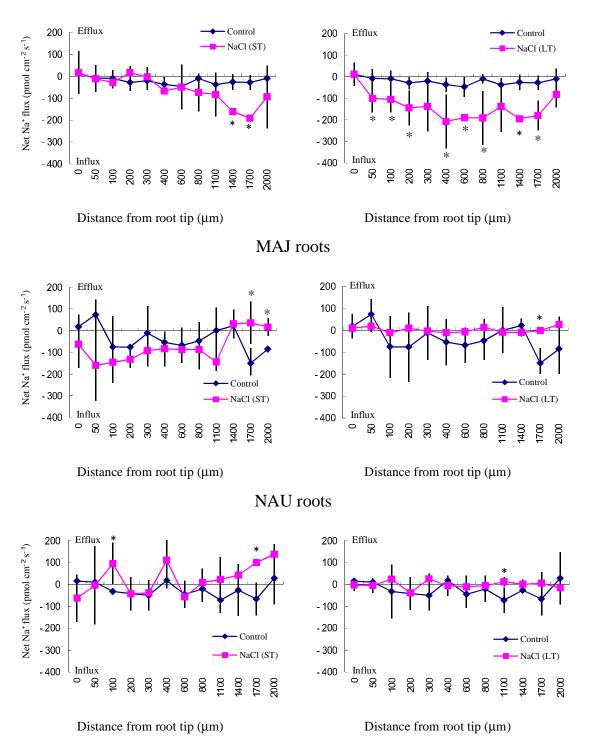

37

- 5 min. In D-F, each point is the mean of four individual plants or axenic EM cultures
 (pelleted hyphae) and bars represent the standard error.
- 3 **Figure 11.** Effects of NaCl and Ca^{2+} supplementation on Na⁺ (A) and K⁺ (B) flux at 4 5 the meristematic, elongation, and maturation zones of *Populus* × *canescens* roots. 6 Plants were subjected to one week of NaCl stress (50 mM) supplemented with or 7 without 10 mM CaCl₂. Control plants were well fertilized but treated without 8 additional NaCl. Roots were sampled at 24 h and 7 d, and mean flux values are given. 9 Steady fluxes at the meristematic, elongation, and maturation regions were measured 10 along the root axes at an interval of 30-50 µm. Each column is the mean of six to eight 11 individual plants and bars represent the standard error of the mean (for each plant, the 12 average fluxes at the meristematic, elongation, and maturation zones were calibrated 13 from measuring points in the measured region). Columns labeled with different 14 letters, a, b, indicate significant difference at P < 0.05 between treatments. N.S., no 15 significant difference.








■Control □NaCl

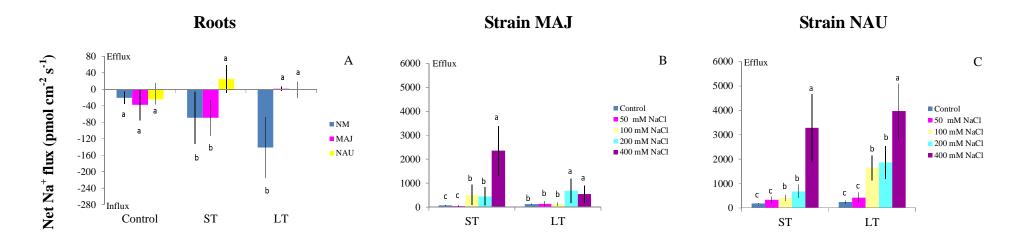


Figure 1. Effect of NaCl (50 mM, 1 week) on Na⁺, K⁺, Ca²⁺, K⁺/Na⁺, and Ca²⁺/Na⁺ in the leaves and roots of mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus* × *canescens* plants. Amount of K⁺, Na⁺ and Ca²⁺ was expressed as atomic mass fraction (%). Each column is the mean of three to four individual plants and bars represent the standard error of the mean. Columns labeled with asterisks indicate significant difference at P < 0.05 between control and NaCl treatments.



Figure 2. Effects of short-term (ST) salinity (50 mM NaCl for 24 h) and long-term (LT) salinity (50 mM NaCl for 7 d) on the net Na⁺ flux in the mycorrhizal (MAJ and NAU) and

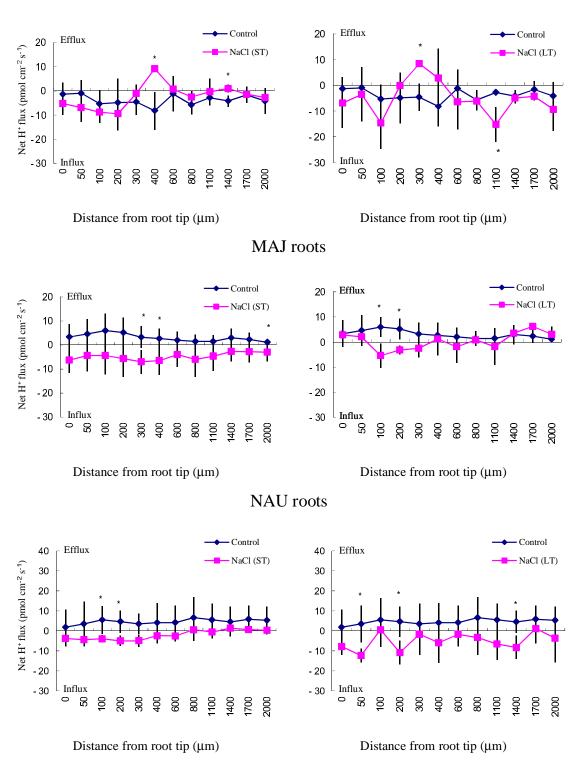
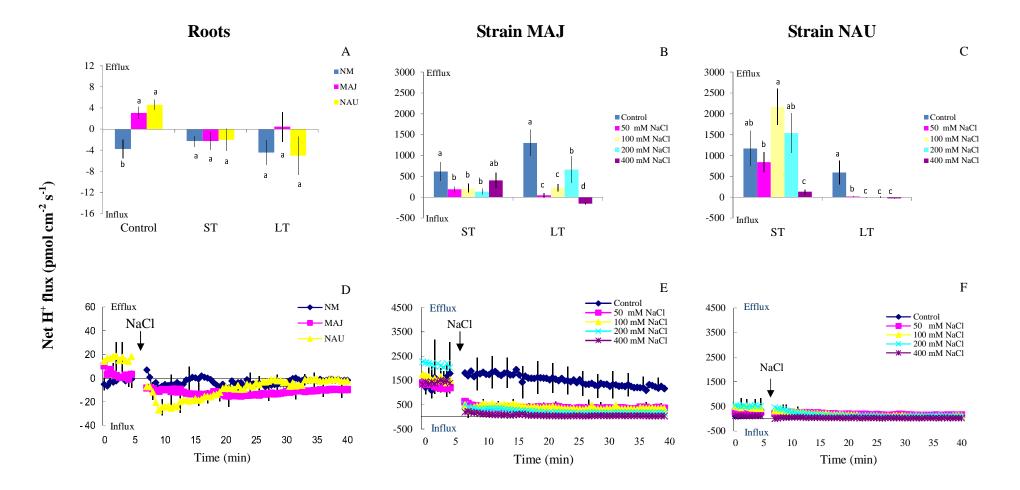
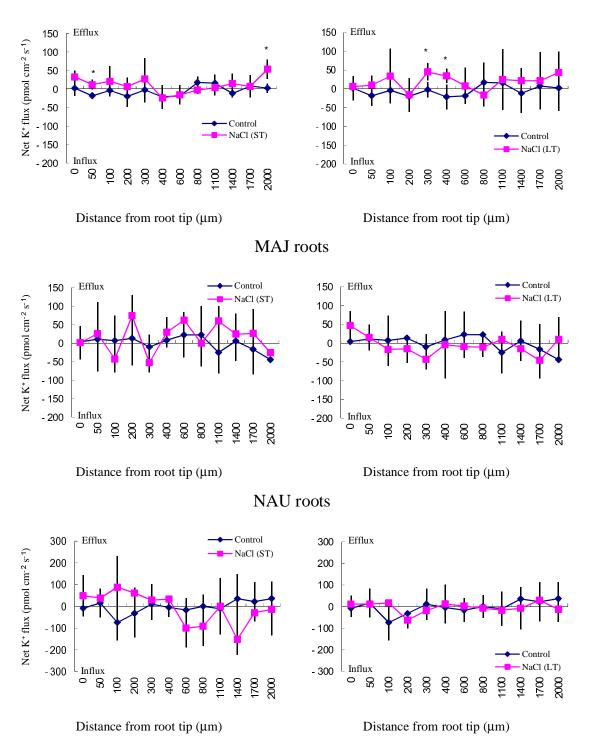

non-mycorrhizal (NM) roots of *Populus* × *canescens* plants. Control roots were treated without NaCl. Na⁺ fluxes were measured along root axes (0–2,000 μ m from the apex) at intervals of 50 to 300 μ m. Each point is the mean of five to six individual plants and bars represent the standard error of the mean. **P* < 0.05 between treatments.

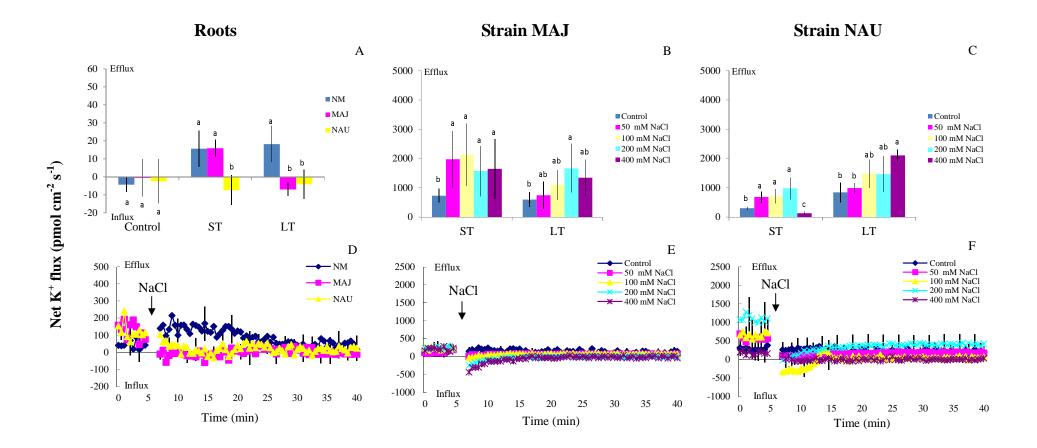
Figure 3. Effects of NaCl on steady Na⁺ fluxes in *Populus* × *canescens* roots (NM, MAJ, NAU) and *P. involutus* strains MAJ and NAU. A, Mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus* × *canescens* plants were subjected to short-term (ST) salinity (50 mM NaCl for 24 h) and long-term (LT) salinity (50 mM NaCl for 7 d), respectively. Control roots were treated without NaCl. For each plant, Na⁺ fluxes were measured along root axes (0–2,000 μ m from the apex at intervals of 50 to 300 μ m) and a mean value is given. Each column is the mean of five to six individual plants and bars represent the standard error of the mean. Columns labeled with different letters, a, and b, indicate significant difference at *P* < 0.05 between NM and EM roots. B and C, *P. involutus* isolates MAJ and NAU were subjected to ST salinity (50, 100, 200, 400 mM NaCl for 24 h) and LT salinity (50, 100, 200, 400 mM NaCl for 7 d), respectively. Control axenic mycelia were treated without NaCl. Na⁺ fluxes of fungus hyphae were measured over a recording period of 30-40 min and a mean value is given. Each column is the mean of five to six axenic EM cultures (pelleted hyphae) and bars represent the standard error of the mean. Columns labeled with difference at *P* < 0.05 between a recording period of 30-40 min and a mean value is given. Each column is the mean of five to six axenic EM cultures (pelleted hyphae) and bars represent the standard error of the mean. Columns labeled with different letters, a, b, and c, indicate significant difference at *P* < 0.05 between salinity levels.

Figure 4. Effects of pharmacological agents on net Na⁺ and K⁺ fluxes in short-term (ST)-treated *P. involutus* isolates MAJ and NAU. A, ST-treated (400 mM NaCl, 24 h) axenic mycelia were pre-treated with 500 μ M sodium orthovanadate or 50 μ M amiloride for 30 min prior to measuring Na⁺ flux. Measuring solutions containing sodium orthovanadate were removed slowly with a pipette and a 10 mL fresh solution was then slowly added to the measuring chamber. B, ST-treated (400 mM NaCl, 24 h) axenic mycelia were pre-treated with 50 μ M tetraethylammonium chloride (TEA) for 30 min prior to measuring K⁺ flux. In A and B, each column is the mean of five to six axenic EM cultures (pelleted hyphae) and bars represent the standard error of the mean. Na⁺ and K⁺ fluxes of fungus hyphae were measured over a recording period of 30-40 min and a mean value is given. Columns labeled with different letters, a, and b, indicate significant difference at *P* < 0.05 between treatments.

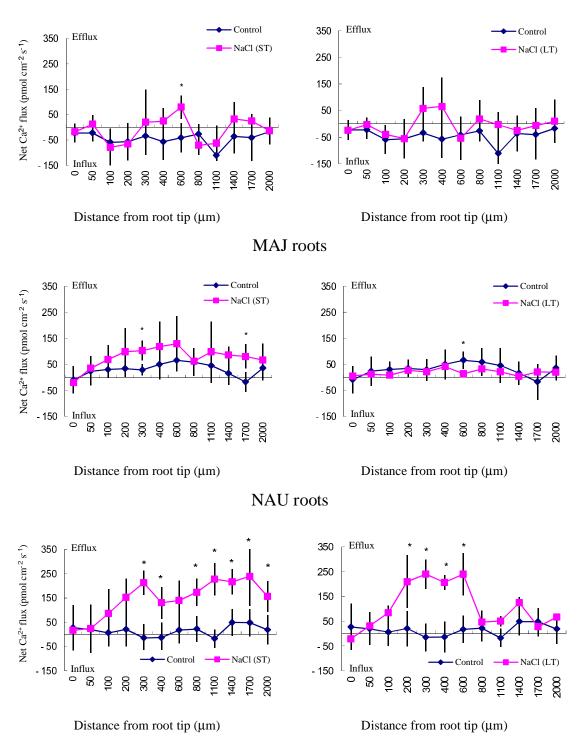
Figure 5. Effects of short-term (ST) salinity (50 mM NaCl for 24 h) and long-term (LT) salinity (50 mM NaCl for 7 d) on the net H^+ flux in the roots of mycorrhizal (MAJ and NAU)

and non-mycorrhizal (NM) *Populus* × *canescens* plants. Control roots were treated without NaCl. H⁺ flux was measured along root axes (0–2,000 μ m from the apex) at intervals of 50 to 300 μ m. Each point is the mean of five to six individual plants and bars represent the standard error of the mean. **P* < 0.05 between treatments.

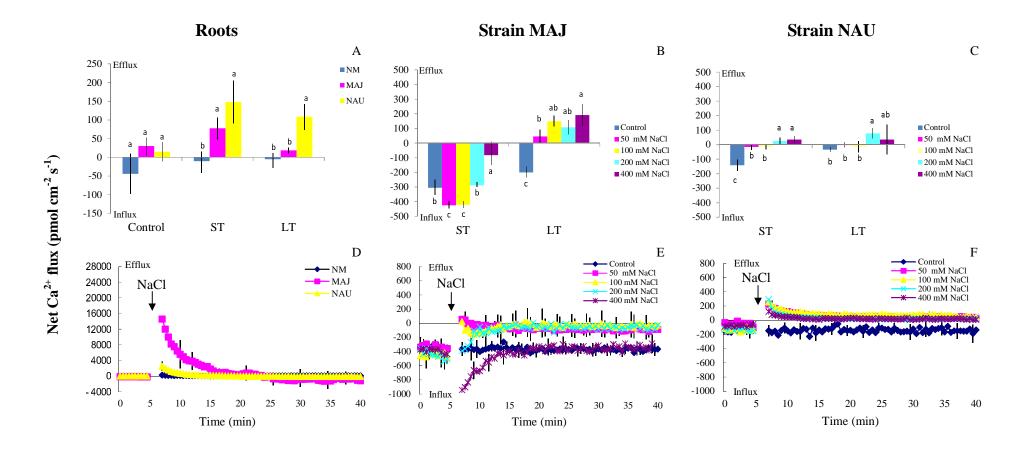




Figure 6. Effects of NaCl on steady and transient H⁺ fluxes in *Populus* \times *canescens* roots (NM, MAJ, NAU) and *P. involutus* strains MAJ and NAU. A, Mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus* \times *canescens* plants were subjected to short-term (ST) salinity (50 mm NaCl for 24 h) and

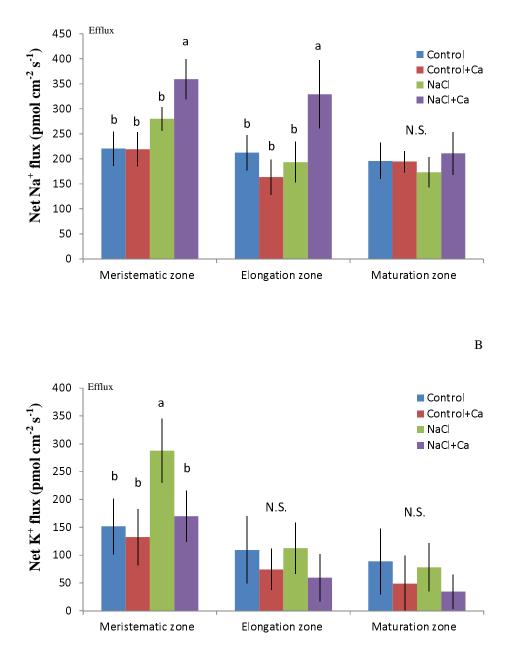
long-term (LT) salinity (50 mM NaCl for 7 d), respectively. Control roots were treated without NaCl. For each plant, H⁺ fluxes were measured along root axes (0–2,000 μ m from the apex at intervals of 50 to 300 μ m) and a mean value is given. Each column is the mean of five to six individual plants and bars represent the standard error of the mean. Columns labeled with different letters, a, and b, indicate significant difference at *P* < 0.05 between NM and EM roots. B and C, *P. involutus* isolates MAJ and NAU were subjected to ST salinity (50, 100, 200, and 400 mM NaCl for 24 h) and LT salinity (50, 100, 200, and 400 mM NaCl for 7 d), respectively. Control axenic mycelia were treated without NaCl. H⁺ fluxes of fungus hyphae were measured over a recording period of 30-40 min and a mean value is given. Each column is the mean of five to six axenic EM cultures (pelleted hyphae) and bars represent the standard error of the mean. Columns labeled with different letters, a, b, c, and d, indicate significant difference at *P* < 0.05 between salinity levels. D, Mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus × canescens* plants were subjected to salt shock with 50 mM NaCl. H⁺ kinetics were recorded at the apex (measuring site was ca. 500 µm from the root tip) after the required amount of 200 mM NaCl stock was introduced into the measuring chamber. E and F, *P. involutus* isolates MAJ and NAU were subjected to salt shock with 50 mM NaCl. H⁺ kinetics of axenic mycelia were recorded after the required amount of 200 mM NaCl stock was introduced into the measuring chamber. Before the salt shock, steady H⁺ fluxes were monitored for ca. 5 min. In D-F, each point is the mean of four individual plants or axenic EM cultures (pelleted hyphae) and bars represent the standard error.


Figure 7. Effects of short-term (ST) salinity (50 mM NaCl for 24 h) and lont-term (LT) salinity (50 mM NaCl for 7 d) on net K^+ flux in roots of mycorrhizal (MAJ and NAU) and

non-mycorrhizal (NM) *Populus* × *canescens* plants. Control roots were treated without NaCl. The K⁺ flux was measured along root axes (0–2,000 μ m from the apex) at intervals of 50 to 300 μ m. Each point is the mean of five to six individual plants and bars represent the standard error of the mean. **P* < 0.05 between treatments.


Figure 8. Effects of NaCl on steady and transient K^+ fluxes in *Populus* × *canescens* roots (NM, MAJ, NAU) and *P. involutus* strains MAJ and NAU. A, Mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus* × *canescens* plants were subjected to short-term (ST) salinity (50 mM NaCl for 24 h) and long-term (LT) salinity (50 mM NaCl for 7 d), respectively. Control roots were treated without NaCl. For each plant, K^+ fluxes were measured along root

axes (0–2,000 μ m from the apex at intervals of 50 to 300 μ m) and a mean value is given. Each column is the mean of five to six individual plants and bars represent the standard error of the mean. Columns labeled with different letters, a, and b, indicate significant difference at *P* < 0.05 between NM and EM roots. B and C, *P. involutus* isolates MAJ and NAU were subjected to ST salinity (50, 100, 200, and 400 mM NaCl for 24 h) and LT salinity (50, 100, 200, and 400 mM NaCl for 7 d), respectively. Control axenic mycelia were treated without NaCl. K⁺ fluxes of fungus hyphae were measured over a recording period of 30-40 min and a mean value is given. Each column is the mean of five to six axenic EM cultures (pelleted hyphae) and bars represent the standard error of the mean. Columns labeled with different letters, a, b, and c, indicate significant difference at *P* < 0.05 between salinity levels. D, Mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus* × *canescens* plants were subjected to salt shock with 50 mM NaCl. K⁺ kinetics were recorded at the apex (measuring site was ca. 500 µm from the root tip) after the required amount of 200 mM NaCl stock was introduced into the measuring chamber. E and F, *P. involutus* isolates MAJ and NAU were subjected to salt shock with 50 mM NaCl. K⁺ kinetics of axenic mycelia were recorded after the required amount of 200 mM NaCl stock was introduced into the measuring chamber. Before the salt shock, steady K⁺ fluxes were monitored for ca. 5 min. In D-F, each point is the mean of four individual plants or axenic EM cultures (pelleted hyphae) and bars represent the standard error.


Figure 9. Effects of short-term (ST) salinity (50 mM NaCl for 24 h) and long-term (LT) salinity (50 mM NaCl for 7 d) on the net Ca^{2+} flux in the roots of mycorrhizal (MAJ and NAU)

and non-mycorrhizal (NM) *Populus* × *canescens* plants. Control roots were treated without NaCl. The Ca²⁺ flux was measured along root axes (0–2,000 μ m from the apex) at intervals of 50 to 300 μ m. Each point is the mean of five to six individual plants and bars represent the standard error of the mean. **P* < 0.05 between treatments.

Figure 10. Effects of NaCl on steady and transient Ca^{2+} fluxes in *Populus* × *canescens* roots (NM, MAJ, NAU) and *P. involutus* strains MAJ and NAU. A, Mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus* × *canescens* plants were subjected to short-term (ST) salinity (50 mM NaCl for 24 h) and long-term (LT) salinity (50 mM NaCl for 7 d), respectively. Control roots were treated without NaCl. For each plant, Ca^{2+} fluxes were measured along root

axes (0–2,000 μ m from the apex at intervals of 50 to 300 μ m) and a mean value is given. Each column is the mean of five to six individual plants and bars represent the standard error of the mean. Columns labeled with different letters, a, and b, indicate significant difference at *P* < 0.05 between NM and EM roots. B and C, *P. involutus* isolates MAJ and NAU were subjected to ST salinity (50, 100, 200, and 400 mM NaCl for 24 h) and LT salinity (50, 100, 200, and 400 mM NaCl for 7 d), respectively. Control axenic mycelia were treated without NaCl. Ca²⁺ fluxes of fungus hyphae were measured over a recording period of 30-40 min and a mean value is given. Each column is the mean of five to six axenic EM cultures (pelleted hyphae) and bars represent the standard error of the mean. Columns labeled with different letters, a, b, c, indicate significant difference at *P* < 0.05 between salinity levels. D, Mycorrhizal (MAJ and NAU) and non-mycorrhizal (NM) *Populus* × *canescens* plants were subjected to salt shock with 50 mM NaCl. Ca²⁺ kinetics were recorded at the apex (measuring site was ca. 500 µm from the root tip) after the required amount of 200 mM NaCl stock was introduced into the measuring chamber. E and F, *P. involutus* isolates MAJ and NAU were subjected to salt shock with 50 mM NaCl. Ca²⁺ kinetics of axenic mycelia were recorded after the required amount of 200 mM NaCl stock was introduced into the measuring chamber. Before the salt shock, steady Ca²⁺ fluxes were monitored for ca. 5 min. In D-F, each point is the mean of four individual plants or axenic EM cultures (pelleted hyphae) and bars represent the standard error.

Figure 11. Effects of NaCl and Ca²⁺ supplementation on Na⁺ (A) and K⁺ (B) flux at the meristematic, elongation, and maturation zones of *Populus* \times *canescens* roots. Plants were subjected to one week of NaCl stress (50 mM) supplemented with or without 10 mM CaCl₂. Control plants were well fertilized but treated without additional NaCl. Roots were sampled at 24 h and 7 d, and mean flux values are given. Steady fluxes at the meristematic, elongation,

and maturation regions were measured along the root axes at an interval of 30-50 μ m. Each column is the mean of six to eight individual plants and bars represent the standard error of the mean (for each plant, the average fluxes at the meristematic, elongation, and maturation zones were calibrated from measuring points in the measured region). Columns labeled with different letters, a, b, indicate significant difference at *P* < 0.05 between treatments. N.S., no significant difference.