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tobacco plants that accumulated GB in vivo were studied during NaCl
doi:10.1111/ppl. 12067 stress. A transient Ca?" efflux was observed in the epidermal cells of

the elongation zone of tobacco roots after NaCl treatment for 1-2min.
After 24h of NaCl treatment, an influx of Ca2* was observed; a low
concentration of GB significantly increased NaCl-induced Ca?* influx. GB
increased the intracellular free calcium ion concentration and enhanced the
expression of the calmodulin (CaM) and heat-shock transcription factor (HSF)
genes resulting in potentiated levels of HSPs. Pharmacological experiments
confirmed that Ca?* and CaM increased HSFs and HSPs gene expression,
which coincided with increased the levels of HSP70 accumulation. These
results suggest a mechanism by which GB acted as a cofactor in the NaCl
induction of a Ca?*-permeable current. A possible regulatory model of Ca?*-
CaM in the signal transduction pathway for induction of transcription and
translation of the active HSPs is described.

Introduction and Murata 2008, Reddy et al. 2011 ) and heat-shock
proteins (HSPs) (Kilstrup et al. 1997, Timperio et al.
2008). Accumulated glycine betaine (GB) may maintain
cellular osmotic balance (McCue and Hanson 1992),

onali h neludine those involvi Ici protect membrane functions from high concentrations of
Slgn23 Ing pat ways, inciuding those involving cajcium Na*t and CI~ (Rhodes and Hanson 1993) and stabilize
(Ca*™) such ion channels, receptors and signaling

molecules, and genes involved in producing compatible
solutes (e.g. osmoprotectants glycine betaine) (Chen

Salt stress limits crop productivity worldwide, and over
6% of land is affected by salinity (Munns and Tester
2008). In response to salt stress, plants activate various

quaternary structures of complex proteins, such as pho-
tosystem Il (PSII) (Papageorgiou and Murata 1995, Chen
and Murata 2011). Exogenous GB application increased

Abbreviations — [Ca®*]q, cytosolic free calcium concentration; BADH, betaine aldehyde dehydrogenase; CaM, calmodulin;
CBL, calcineurin B-like proteins; CPA, cyclopiazonic acid; CPZ, chlorpromazine; Eosin Y, eosin yellow; Eryth-B, erythtosine
B; GB, glycine betaine; HSF, heat-shock transcription factor; HSP, heat-shock protein; LSCM, laser scanning confocal
microscopy; NMT, non-invasive microelectrode ion flux measuring techniqu; PM, plasma membrane; PSIl, photosystem II;
gRT-PCR, quantitative real-time polymerase chain reaction; W7, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide; WT,
wild-type; ®PSII, actual PSII efficiency.
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environmental stress tolerance in plants that were not
able to accumulate GB in previous studies (Yang and Lu
2005, 2006, Park et al. 2006, Chen and Murata 2008).
Genetically engineered tobacco was established for the
biosynthesis of GB in vivo by introducing the betaine
aldehyde dehydrogenase (BADH) gene into tobacco;
this tobacco showed increased tolerance of photosyn-
thesis to salt stress (Yang et al. 2008). Other studies have
also shown that the accumulation of GB in vivo due
to genetic engineering enhanced salt tolerance in other
plants (Gao et al. 2000, Holmstrom et al. 2000, Prasad
et al. 2000, Goel et al. 2011). However, the mechanism
by which low levels (umol rang) of exogenous GB pro-
tect PSII function and enzymes is unclear, especially as
the overall level of GB accumulation in vivo is low (Yang
and Lu 2005, Yang et al. 2008). GB in vitro stabilizes
the DNA double helix structure and results in a lower
melting temperature (Rajendrakumar et al. 1997). GB
can upregulate a series of genes (Einset et al. 2007). Chen
et al. (2009) used proteomic analysis to confirm that the
exogenous application of GB upregulates many proteins
including PSII, Rubisco and superoxide dismutase when
plants are subjected to NaCl stress. GB may be operating
via an unidentified signal pathway, and further studies
are warranted to determine which pathways are active.
Recent studies examining the effects of GB on ion
transport systems in plants have predominantly focused
on the influx of K into cells (Cuin and Shabala 2007).
Ca’* is involved in nearly all aspects of plant devel-
opment and participates in many regulatory processes.
The importance of Ca?* as a second messenger will be
highlighted in this article. In response to NaCl treatment,
cytosolic free calcium ([Ca**]y) levels were rapidly
elevated in previous studies (Lynch et al. 1989, Okazaki
et al. 1996, Kiegle et al. 2000). Accordingly, whole-
plant [Ca’"]e measurements have suggested a direct
correlation between the strength of NaCl stress and the
magnitude of [Ca?t]c, elevation (Tracy et al. 2008).
[Ca®T]eyt acts as a ubiquitous signal in eukaryotic cells,
which activates many downstream intracellular effectors
(Dodd et al. 2010, Kudla et al. 2010). This calcium sig-
nature forms and disappears by the coordinated action
of Ca’* channels, Ca?*-ATPases and Ca?* exchanger
isoforms on the plasma membrane (PM) and tonoplast
(McAinsh and Pittman 2009). Ca’?*t influx through
Ca’*-permeable channels on the PM is important for
triggering [Ca>]cy signaling. However, Ca?* release
from intracellular stores explains elevated [Ca“]cyt
levels via the calcium-induced calcium release pathway
(Pei et al. 2000, Zhang et al. 2007, Wu et al. 2012).
The fast change in [Ca? ]y is sensed by several Ca?*-
binding proteins or sensors, such as calmodulin (CaM),
CaM-like proteins, calcineurin B-like proteins (CBL),

CBL-interaction protein kinases and Ca?*-dependent
protein kinases (DeFalco et al. 2009). CaM is an
important intermediate of calcium-mediated signal
transduction (Liu et al. 2003). A change in [Ca“]cyt
is also involved in regulating the binding activity of the
heat-shock transcription factor (HSF) to the heat-shock
element (Mosser et al. 1990, Li et al. 2004), and the
synthesis of HSPs (Charng et al. 2007, Kim and Schoffl
2002). HSPs can act as chaperones of denatured proteins
and assist in the translocation and/or degradation of
damaged proteins under various stresses (Nollen and
Morimoto 2002, Li et al. 2012). Proteomic analysis
of salt-stressed tomato seedlings showed that HSPs
were 34% of differential expression protein spots and
exogenous application of GB resulted in upregulation
of some HSPs (Chen et al. 2009). Previous studies have
reported involvement of a Ca**-CaM signaling system
in HSP gene expression or HSP synthesis and the order
of signal transduction steps during heat stress (Liu et al.
2003, 2008, Zhang et al. 2009, Wu et al. 2012). GB,
either applied exogenously or accumulated in vivo in
codA-transgenic seeds, enhanced the expression of HSPs
and improved thermotolerance (Li et al. 2011). It is
currently unknown whether GB directly potentiates the
expression of HSP genes or if the Ca?*-CaM pathway
regulates HSP expression under NaCl stress.

To elucidate the mechanism by which GB influences
HSP expression under NaCl stress, the effects of GB on
net Ca’" fluxes and [Ca’T]ey in the elongation zone
cells of tobacco root were studied using a non-invasive
microelectrode ion flux measuring technique (NMT)
and laser scanning confocal microscopy (LSCM). The
expression of HSP induced by GB under NaCl stress was
also determined using quantitative real-time polymerase
chain reaction (qRT-PCR) and western blotting analysis.
Our results suggested that GB mediated the expression
of HSP involving calcium signaling pathways in tobacco
plants under NaCl stress.

Materials and methods
Plant material, salt and GB treatments

Tobacco (Nicotiana tabacum-K326) plants were trans-
formed with the BADH gene from spinach (Spinacia
oleracea) that is targeted to the cytosol and chloroplasts.
The generation of five homozygous BADH-transgenic
lines was accomplished as described by Yang et al.
(2008). The transgenic line4, which contained the high-
est levels of GB was used. Transgenic tobacco (T)
and wild-type (WT) tobacco seedlings were grown in
Hoagland nutrient solution with a photoperiod of 16/8 h
light/dark. NaCl (0, 50 and 100 mM) and/or GB (0, 5
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and 10 mM) were dissolved in Hoagland nutrient solu-
tion. The 8-day-old tobacco seedlings were treated with
GB or other compounds for 1h, and then exposed to
the 50 or 100 mM NaCl solution for 24 h. Lanthanum
chloride (LaCl;, 1 mM) and verapamil (200 uM) were
used as Ca>*-permeable channel blockers. Eosin yellow
(Eosin Y, 0.5uM); erythtosine B (Eryth-B, 10uM) and
cyclopiazonic acid (CPA, 50 uM) were used as Ca?t-
ATPase metabolic inhibitors in this study. The divalent
cation ionophores, Ca?* chelators or CaM antagonists
used included A23187 (25uM), ethylene glycol bis
(2-aminoethyl) tetraacetic acid (EGTA) (5mM), N-(6-
aminohexyl)-5-chloro-1-naphthalenesulfonamide (W7,
300 uM) and chlorpromazine (CPZ, 50 uM). All chem-
icals were purchased from Sigma (St. Louis, MO,
USA). More details and efficient working concentra-
tions referred to Shabala et al. (2011), Nemchinov et al.
(2008) and Liu et al. (2003).

GB extraction and quantification

The method developed by Rhodes et al. (1989) was
followed. Leaf samples were ground in 2 ml of a mixture
of methanol:chloroform:water (12:5:1, v/v/v) at 60°C
for 30 min. After centrifugation at 10000 g for 10 min,
the aqueous phase was fractionated by ion-exchange
chromatography using an Amberlite CG-50 (100—-200
mesh, H* form; Rohm and Haas Company, Philadelphia,
PA, USA) and Dowex 1-X2 (50—100 mesh, CI~ form; Alfa
Aesar Company, Karlsruhe, Germany). The GB fraction
was eluted with 6 M NH;OH, dried under a stream of N,
at45°C and dissolved in 2 ml of methanol. Betaine in the
preliminarily purified extract was analyzed using HPLC
(Waters 600) and Millennium Chromatography Manager
System Control software on a liquid chromatograph
(SCL-10AVP; Shimadzu, Kyoto, Japan) equipped with
a Hypersil 10 SCX column.

Measurement of chlorophyll fluorescence, CO,
assimilation rate and dry weight

Chlorophyll fluorescence was measured with a portable
fluorometer FMS2 (Hansatech, King’s Lynn, UK). After
a dark adaptation period of 30min, basal non-
variable chlorophyll fluorescence level (Fp), maximal
fluorescence induction (Fy,) and maximal fluorescence
level in the light-adapted state (F'm) were determined
according to the experimental protocol of Yang
et al. (2008). Using the abovementioned fluorescence
parameters, we calculated the actual PSIl efficiency using
the formula: (®PSII) = (F' i, — Fs)/F'm.

The net CO, assimilation rate was measured using
a portable photosynthetic system (CIRAS-2, PP Systems,
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Herts, UK). The measurement was carried out under
conditions of concentrated ambient CO, (380ull~")
and 800umolm=2s~" photosynthetic photon flux
density. During measurement, relative humidity was
maintained at 70% and leaf temperature was set at
24 40.5°C in the leaf chamber.

After 6 weeks of salt and GB treatments, whole plants
were collected. The DW of each plant was determined

after oven-drying at 80°C for 48 h.

Determination of calcium content

WT and T plants were grown in Hoagland nutrient
solution for 6 weeks. After 24 h of NaCl stress, the shoots
and roots of the plants were collected separately and
dried at 70°C for 2 days prior to tissue ashing and analysis
of Ca?* using atomic absorption spectrum (Hitachi Z-
8000, Hitachi Ltd., Tokyo, Japan). A minimum of 200 mg
dry weight of tissue was used for each tissue sample. Five
replicate tissue samples were taken from different pots.

Experimental solutions and protocols
for NMT measurements

The net flux of Ca?t was measured by Xuyue-Sci.
and Tech. Co. (Beijing, China) (http://www.xuyue.net),
using the non-invasive microelectrode ion flux mea-
suring technique (NMT) (BIO-IM, Younger USA LLC,
Amherst, MA). Concentration gradients of target ions
were measured by moving the ion-selective micro-
electrode between two positions close to the plant
material in a preset excursion with a distance of 20 um;
each cycle was completed in approximately 6s. Net
fluxes of and Ca’* concentrations from the elonga-
tion zone of tobacco roots were measured for 15 min
using non-invasive ion-selective vibrating microelec-
trodes. Measurements were completed for three replicate
seedlings per treatment. Each sample was floated in mea-
suring solution (0.1 mM CaCl, +0.1T mM KCI+0.1T mM
MgCly +0.5mM NaCl +0.2mM NaySO4+ 0.3 mM
MES, pH6.0) for at least 30 min before measurement.
Data and image acquisition, preliminary processing and
control of the electrode positioner and steppermotor-
controlled fine focus of the microscope stage were
performed using IMFLUX software (Sun et al. 2009). lonic
fluxes were calculated with mageflux, developed by Y.
Xu (http://xuyue.net/mageflux).

Measurement of [Ca?*]c

For measurement of [Ca”]cyt, 1.5cm long root tissue
sections with intact cell layers were obtained from the
seedlings. Fluo-3/AM was used as the Ca?T-sensitive
fluorescent probe. The tissue was incubated in a medium



containing 10 uM Fluo-3/AM at 24°C in the dark for
2 h prior to imaging. The epidermal root cells were
observed using LSCM (Zeiss; LSM510 Meta, Germany).
An excitation filter (488 £10nm) and emission filter
(530+£40nm) were used in this experiment. The scan
mode was XY-T (three dimensional). All image analysis
was performed using LSM510 MEeTa software.

gRT-PCR analysis

Total RNA was extracted from shoots of 8-day-old
seedlings from each treatment using Trizol reagent. Con-
taminated DNA was removed with RNase-free DNase
[. First-strand cDNA synthesis was performed using
4ug of RNA, oligo (dT) primer and the Qiagen one-
step real-time PCR kit (QINGEN, Dusseldorf, Nordrhein
Westfalen, German). Primers for gene amplification were
designed according to the sequences downloaded from
GenBank. The quantitative real-time PCR experiment
was carried out at least three times under identical con-
ditions, with the housekeeping gene (actin) as an internal
control. Gene expression was determined using the two
standard curve method as described by Ramakers et al.
(2003) and analyzed by Mx3000P software. The value of
WT was setto 1. Details of primers are shown in Table S1.

Immunoblotting of isolated proteins
with a HSP70 antibody

After treatment, shoot tissues were ground to a pow-
der in liquid nitrogen. The powder was transferred to a
microcentrifuge tube, which contained 1 ml of protein-
extraction buffer 20mM Tris—HCI, 1 mM EDTA-Na,,
10mM B-mercaptoethanol, pH7.5). The homogenate
was centrifuged at 14 000 g for T0 min at 4°C, and the
supernatant was collected as the soluble protein fraction.
The amount of protein was determined using the dye-
binding assay described by Bradford (1976) with bovine
serum albumin as the standard. Proteins in the soluble
fraction were separated by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE), and then
electro-blotted onto a polyvinylidene difluoride mem-
brane (Millipore, Boston, MA). Membranes were incu-
bated with an antiserum (1:2000) that had been raised in
rabbit against HSP70. Immuno-reactive proteins were
detected with peroxidase-conjugated goat antibodies
against rabbit 1gG (1:5000). Quantitative image anal-
ysis of HSP70 was performed using a Tanon Digital Gel
Imaging Analysis System (Tanon-4100, Shanghai Tanon
Science and Technology Co., Ltd. Shanghai, China).

Statistical analysis

All data obtained was subjected to one-way analysis
of variance (ANOvA) using the statistical software spss
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Fig. 1. GB content of WT plants, WT plants pretreated with exogenous
GB (5 and 10 mM) and BADH-transgenic plants. GB content was
determined by HPLC. WT: the wild-type tobacco seedling; T: the BADH-
transgenic seedling. Values represent means + st (n=6). ""Significant
differences in comparison with the WT at P < 0.01.
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Fig. 2. Changes in dry weight of tobacco seedlings. Exogenous GB
uptake in the leaves of tobacco plants following application of GB (10
mM) and/or NaCl for 6 weeks. GB treatment was performed by watering
the seedlings daily with 300 ml of GB solution (added in the Hoagland
solution). WT: the wild-type tobacco seedling; T: the BADH-transgenic
seedling. Values represent means = st (n = 3). "Significant differences in
comparison with the WT at P < 0.05.

16.0 and the treatment means were compared by using
Duncan’s test at P <0.05 or P <0.01. Each data point
was mean of five replicates (n > 3) and was expressed as
mean = standard error (SE).

Results

GB accumulation, growth and photosynthetic
characteristic of WT and transgenic BADH plants

GB could accumulate in transgenic BADH plants (T).
Exogenous application of GB also increased the GB
contents in WT plants (Fig. 1). Growth of tobacco plants
was inhibited when exposed to salt stress. The dry weight
of plants gradually decreased as the NaCl concentration
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Fig. 3. CO, assimilation (A) and actual PSII efficiency (®PSll) (B) in
tobacco plants under salt stress. WT: the wild-type tobacco seedling;
T: the BADH-transgenic seedling. Values represent means =+ se (n=6).
“Significant differences in comparison with the WT at P < 0.05.

increased, and this decrease was more severe in WT
than transgenic plants. Exogenous application of GB also
reduced the impact of salt stress on plant growth (Fig. 2).
Photosynthesis is the basis of plant growth and
dry mass accumulation. In order to investigate how
GB affected dry mass, the CO, assimilation rate
and the actual PSII efficiency (®PSIl) of transgenic
BADH plants and WT plants pretreated with exogenous
GB were measured. The CO;, assimilation rate and
®PSII of tobacco plants decreased with increasing salt
concentration, and the decrease was much greater
in WT plants than in transgenic plants and plants
pretreated with GB (Fig. 3). These results suggest that
salt tolerance is enhanced by GB accumulation as
demonstrated through exogenous application and in vivo
accumulation in BADH-transgenic plants.

GB enhanced NaCl-induced Ca?t influx from
tobacco root epidermal cells

Net Ca’* fluxes induced by NaCl were measured by
NMT from the tobacco root epidermis. After treatment
with NaCl, the Ca?* flux showed a more complex
kinetic, switching from a rapidly increased net Ca’*
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efflux immediately after exposure to NaCl to a steady-
state decrease for 15min and then to an influx state
after 24 h (Figs. 4A, C). GB accumulated in vivo (T)
reduced the transient Ca?T efflux (Fig. 4A), as did
pretreatment with 5 and T0mMGB (data no shown).
Figure 4B showed that tobacco roots responded to the
NaCl treatment with an immediate large net Ca* efflux,
but increasing the NaCl concentration (50—100 mM)
did not significantly increase the speed of the outflow
of calcium ions. In addition, Ca2t-ATPase metabolic
inhibitors (Eosin Y; eryth-B and CPA) had not significantly
effect on Ca?* efflux (Fig. 4C).

Net Ca’* flux represents a balance between NaCl-
induced Ca?t efflux and influx. After 24 h of salt stress,
NaCl-induced influx appeared to dominate over efflux,
resulting in a net Ca?* influx. GB, either applied
exogenously or accumulated in vivo, potentiated
NaCl-induced Ca?* influx in tobacco root epidermal
cells after long-time salt stress (Fig. 4D). Pharmacology
results showed that LaCls rapidly blocked the Ca?*
influx, and verapamil had a little effect on Ca?*
influx. This indicated that GB may have affected the
Ca?Tinflux through a LaCl;-sensitive channel (Fig. 4E).
Ca’*-ATPase metabolic inhibitors (Eosin Y; eryth-B and
CPA) slightly affect the net Ca?* influx, indicating GB
mainly activated Ca’*-permeable ion channels after
24 h of salt stress (Fig. 4F).

GB potentiated [Ca2+]cyt from tobacco epidermal
cells under salt stress for 24 h

To investigate the effect of GB on [Cazﬂcyt, the
kinetics of change in [Cazﬂcyt were observed at the
elongation zone of epidermal cells of 8-day-old tobacco
seedling using LSCM. Treatment with 25 uM A23187 (a
divalent cation ionophore) and 5 mM CaCl, resulted in a
fluorescence intensity of 218.4 (Fig. 5, A1); whereas, the
fluorescence intensity in tissue treated with 5 mM EGTA
(Ca* chelator) and 5 mM CaCl, was only 6.9 (Fig. 5,
Az). The fluorescence intensity of WT with non-loaded
Fluo-3/AM (Fig. 5, A3) and WT incubated with 10 um
Fluo-3/AM (Fig. 5, B1), which were not treated by NaCl
were 8.5 and 14.4, respectively, which indicated that
autofluorescence (WT without NaCl) was negligible.
These results also verified that Fluo-3-fluorescence
increase does represent a [Ca“]cyt increase.
Fluo-3-fluorescence in the cytoplasm was higher in
WT with NaCl treatment (Fig. 5, C{) as compared to
WT without NaCl treatment (Fig. 5, By). However, a
significant increase in [Ca2+]cyt was observed in cells
pretreated with GB (Fig. 5, C») and transgenic plants cells
(T) (Fig. 5, C3) compared with WT under NaCl stress con-
ditions. The fluorescence intensity increased threefold in
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Fig. 4. Effects of GB on the NaCl-induced Ca?* fluxes in the elongation zone of 8-day-old tobacco roots (negative ion flux indicates influx; positive
ion flux indicates efflux). Transient Ca?* (A, B and C) flux kinetics from the root cells in response to NaCl treatment are shown. The steady-state
flux profile of Ca?* (D, E and F) was examined by continuous flux recording (15-20 min) after 24 h of salt stress. The mean flux values during the
measuring periods are shown in the panels. WT: the wild-type tobacco seedling; T: the BADH-transgenic seedling. +: introduction of drugs. Fluxes
were plotted as the mean =+ st (n > 3). "Significant differences in comparison with the WT at P < 0.05.

both cells of WT with T0mMGB application and in
transgenic plants (T) (Fig. 5D), which indicated that GB
enhanced [Ca“]cyt of tobacco epidermal cells, which is
consistent with the results of Ca?* influx in Fig. 3C.

GB increased the calcium content of tobacco plants
during long-time salt stress

To further investigate whether GB plays a role in Ca’*
uptake, the calcium content of WT plants pretreated with
GB (WT + GB) and transgenic plants (T) was compared
with that of WT plants. GB affected Ca?* acquisition
in shoots and roots during long-time NaCl stress, and
the calcium content of WT plants pretreated with GB
and that of T plants was higher than that of untreated
WT plants (Fig. 6). These results were consistent with
GB as an activator of Ca?* channels resulting in higher
Ca?Tinflux and [Ca?*]¢y in epidermal cells of tobacco
roots during NaCl stress (Figs 4 and 5).

GB influenced the expression of genes under salt
stress for 24 h

gRT-PCR analysis showed that CaM7 had a basal
expression level in normal conditions in 8-day-old
tobacco seedlings (Fig. 7A). After 24 h of salt stress, CaM1
gene expression decreased in WT seedlings, while in WT
seedlings treated with exogenous GB (WT + GB) and

transgenic seedlings (T), the expression of CaMT gene
was enhanced; EGTA pretreatment decreased CaM1
expression.

GB enhanced NaCl-induced HSF/HSPs gene expres-
sion (Fig. 7B, C). Various compounds that affect the
Ca?*-CaM signaling system were employed to investi-
gate the role of Ca?*-CaM in upregulating gene expres-
sion. HSFs levels were elevated in salt stress conditions
(Fig. 7B: WT vs WT + NaCl). The expression of HSF1and
HSF2 increased during salt stress following treatment
with GB (WT +NaCl vs WT + GB + NaCl). Whereas,
treatment with the Ca?* chelator EGTA abolished
the upregulation by GB (Fig. 7B: WT + GB + NaCl vs
WT + GB + EGTA + NaCl). As expected, exogenous GB
also significantly potentiated the upregulation of small
heat-shock protein gene (sHSP) and HSP70 accumula-
tion (Fig. 7B). Expression of the cytosolic HSP18p gene
and chloroplast located HSP26 gene was apparently
increased by GB under NaCl stress (Fig. 7B). Transgenic
seedlings showed a similar trend for HSPs gene expres-
sion compared with the respective control (Fig. 7C).

The EGTA treatment caused a remarkable decrease
in the level of CaM1, HSF and HSP mRNAs under salt
stress conditions (Fig. 7A—C). The expression of HSF
and HSPs decreased in extent with the CaM antagonist
(W7 and CPZ), which indicated that GB influenced the
expression of genes involving in the Ca?*-CaM pathway.
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Fig. 5. Pseudocolor LSCM images of the elongation zone of tobacco root cells following different treatments. Roots of 8-day-old green tobacco
seedlings were incubated in a medium containing 10 uM Fluo-3/AM at 24°C in the dark for 2 h. One the representative micrograph of the root cells
out of four is shown. WT: the wild-type tobacco seedling; T: the BADH-transgenic seedling. (A) Ay, Fluo-3-fluorescence in WT treated with 5 mM
CaCl, and 25 uM A23187; As, autofluorescence in WT non-loaded dye; As, Fluo-3-fluorescence in the WT treated with 5 mM EGTA; A;, A4, and
Ag were the corresponding bright-field image of the cells of A;, A3 and As, respectively. (B) Pseudocolor images of fluo-3-fluorescence in the tissue
of the tobacco root cells without NaCl treatment. By, WT; B3, WT with GB pretreatment; Bs, the T; B, B4 and Bg are the corresponding bright-field
images of the cells of By, B3 and Bs, respectively. (C) Pseudocolor images of fluo-3-fluorescence in the tobacco root cells after NaCl treatment for 24
h. Cq, WT; C3, WT with GB pretreatment; Cs, T; C,, C4 and Cg were the corresponding bright-field images of the cells of Cq, C3 and Cs, respectively.
(D) The kinetics of [Ca”]cyt in the elongation zone of tobacco root cells during NaCl stress. The value of fluorescence intensity is an average value
obtained by scanning >10 cells in three different repeats each experiment. The value of fluorescence intensity WT without NaCl was set to 100%.
“Significant differences in comparison with the WT at P < 0.05.

GB enhanced the accumulation of HSP70 under salt and CPZ caused a decrease of HSP70, which confirmed
stress for 24 h further that GB enhanced the synthesis of HSPs involved

; 24
HSP70 expression levels were quantified by western in the Ca™-CaM pathway.

blotting. As noted in Fig. 8, both the accumulation of GB
in vivo and exogenously applied GB in WT seedlings
enhanced the expression of HSP70. LaCls, verapamil and
EGTA treatment decreased expression levels of HSP70,  Exogenously applied GB penetrates into plant leaves
which suggested GB may enhance expression of heat-  quickly and is readily translocated to roots and
shock genes and the accumulation of HSP involved in  expanding leaves, remaining unmetabolized in the plant
Ca’* signaling. Western blotting also showed that W7 tissue for several weeks (Mikeld et al. 1996). Thus,

Discussion
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to WT after application of GB (10 mM) and/or NaCl for 6 weeks.
(A) GB increased the calcium contents in shoots; (B) GB enhanced
calcium contents in roots. WT: the wild-type tobacco seedling; T: the
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differences in comparison with the WT at P < 0.05.

being able to compare exogenous application of GB
with in vivo accumulation in BADH-transgenic plants
allows for investigation of the protecting role of GB.
GB concentrations were similar in the leaves when
10 mM GB was exogenously and in the transgenic BADH
line (Fig. 1). The dry weight of seedlings gradually
decreased as the NaCl concentration increased. GB,
either applied exogenously or accumulated in vivo in a
BADH-transgenic line, increased dry weight (Fig. 2) as a
consequence of higher CO, assimilation rate and ®PSlI
under salinity stress (Fig. 3A, B) which is consistent with
results from previous studies (Mdkela et al. 1999, Lopez
etal. 2002, Yang and Lu 2006, Zhang et al. 2011). These
results confirm that GB, either applied exogenously or
accumulated in vivo in BADH-transgenic plants at low
concentrations can improve salt tolerance.

Salinity severely affects plant growth due to water
stress, ion toxicities and/or ion imbalance (Mahmood
et al. 2010, Ashraf et al. 2005). Ca** transport is
impacted by salt stress and a massive Ca?* flux has
been reported from cells in response to numerous
environmental stresses (Sanders et al. 1999); this flux
undoubtedly affects growth, metabolic performance and
survival of the plant. It is known that Ca®* influx into
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Fig. 7. GB influenced the relative expression of genes compared to
WT following different treatments, as revealed by real-time quantitative
PCR analysis. (A) GB influenced the relative expression of CaM7; (B) GB
applied exogenously affected the relative expression of genes; (C) GB
accumulated in vivo influenced the relative expression of genes. The
average gene activity was obtained from at least fifteen independent
shoots, and each assay was repeated three times. The value of WT
without NaCl was set to 1. Drugs (5 mM EGTA, 50 uM CPZ and 300 uM
W?7) were introduced to the bath for 1 h before NaCl treatment for 24
h. WT: the wild-type tobacco seedling; T: the BADH-transgenic seedling.
+: introduction of drugs. Values represent the mean =+ st (n=3). ** and
* indicate significant differences in comparison with the WT at P < 0.01
and P < 0.05, respectively.

the cell is mediated by Ca?*-permeable ion channels
that facilitate the rapid movement of Ca?* down its
electrochemical gradient (White and Broadley 2003). In
contrast, Ca>* movement out of the cell requires active
transport mechanisms such as a Ca?* pump. Therefore,
the net Ca* flux measured represents a balance between
these two opposing processes. However, high external
Na* may exchange with Ca?* in the cell wall, which
may confound observations of salinity effects on the
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Fig. 8. GB potentiated the accumulation of HSP70 in tobacco shoots
following different treatments (measured by western blotting using
a rabbit anti-HSP70). (A) Representative western blotting analysis of
tobacco shoots; (B) the figure represents relative HSP70 accumulation.
Drugs (5 mM EGTA, 1 mM LaClz, 200 uM verapamil, 50 uM CPZ and
300 uM W7) were introduced to the bath for 1 h before NaCl treatment
for 24 h. WT: the wild-type tobacco seedling; T: the BADH-transgenic
seedling. +: introduction drugs. Values are the mean =+ se (n=3).
*Significant differences in comparison with the WT at P < 0.05.

activity of PM Ca?* transporters. An immediate large
net Ca’™ efflux was observed with the peak Ca®* efflux
(from —1.7 to 95 pmol m™2s~") at 1-2 min after NaCl
treatment started (Fig. 4A). However, long-time salt
stress promoted calcium influx in epidermal cells in
the root elongation zone (Fig. 4D), confirming previous
statements that NaCl-induced changes in [Ca*"]cy
(Okazaki et al. 1996, Cramer and Jones 1996). This trend
is also consistent with a previous study by Zepeda-Jazo
et al. (2011) characterizing an OH®-induced Ca’* flux.
Concentrations above 50 mM NaCl led to ‘saturation’
kinetics of the exchangeable cell wall, where Ca?*
was replaced by Na®™ and H* ions (Shabala and
Newman 2000). No significant difference was found
in the magnitude of the Ca?* flux response following
treatment with 50 and 100 mM of NaCl (Fig. 4B), which
suggests that the presence of the cell wall was crucial
for the NaCl-induced Ca’* effluxes at the tissue level
that were observed by Shabala and Newman (2000).
In addition, Ca2*-ATPase metabolic inhibitors (Eosin Y;
eryth-B and CPA) had not significantly effect on Ca’*
efflux (Fig. 4C), which indicated the transient NaCl-
induced Ca?* efflux was not mainly outflows of calcium
efflux systems. Hence, the transient outflows of calcium
were likely produced by the cell-wall cation exchange.
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Ca’" influx was essential in epidermal cells of the root
elongation zone under salt stress.

One of the most prominent roles of Ca* is as a signal
transduction element, and the concentration of [Ca2+]cyt
is critically important to control many cell responses. In
resting cells, the concentration of [Ca*]cyt is lower than
100 nM, while Ca’>* concentrations in both apoplast
and intracellular stores (e.g. endoplasmic reticulum and
vacuole) are up tenfold to at least micromolar level (Allen
etal. 1995). Ca?* must be maintained at submicromolar
level (100-600 nM) in the cytosol, as it precipitates
phosphate, the energy currency of the cell (Clapham
1995). An important finding reported herein is that
GB, when applied exogenously or accumulated in vivo
in transgenic seedlings, enhanced NaCl-induced Ca?*
influx from tobacco root epidermal cells (Fig. 4D) and
affected [Ca2+]cyt in the tobacco epidermal root cells
(Fig. 5) after 24h of salt stress. [Ca“]cyt increased
threefold in cells of transgenic plants (T) than that in
WT, which were not upon 300 nM and harmless for
cells. GB decreased the peak Ca’* efflux, which also
confirmed that GB could enhance NaCl-induced Ca**
influx (Fig. 4A).

Multiple channels are involved in Ca?* transport
in plant cells (Kudla et al. 2010). A pharmacological
approach was used to decipher the contribution of
the various transport mechanisms to Ca* flux. Figure
4E shows that LaCl; caused a 150% reduction in
the magnitude of NaCl-induced Ca?* influx, and
verapamil caused a slight reduction, which implied
that GB likely mediated the NaCl-induced Ca** influx
mainly through LaCls-sensitive channels. Ca?*-ATPase
metabolic inhibitors (Eosin Y; eryth-B and CPA) slightly
affect the net Ca’* influx (Fig. 4F), indicating GB
mainly activated Ca’*-permeable ion channels after
24h of moderate salt stress (50mM). The previous
report implicated PM Ca”?*-ATPase activation in plant
adaptation to osmotic stress (Beffagna et al. 2005). It
was assuming an important role of PM Ca?*-ATPase
in switching off the signal triggering ROS production
(Romani etal. 2004, Bose etal. 2011). GB has a vital role
in maintaining the activities of ROS scavenging enzymes
(Chen and Murata 2011) to reduce ROS content. PM
Ca”*-ATPase activation involves ROS signal, which will
be studied in our future work.

GB mainly affected the permeability of Ca** channels
directly resulting in a Ca* influx (Fig. 4D) and elevated
[Ca®T]ey (Fig. 5). Both the static and dynamic results
suggest that GB may affect the Ca?* signal pathways.
GB also appeared to increase the Ca>* uptake capability
(Fig. 6), which provides new information linking Ca?*
uptake and accumulation in shoots during the course of
plant growth and development as a possible component



of salt-induced signaling as well as in the heat-shock
signal pathway (Liu et al. 2003, Wu et al. 2012). It
appears that GB contributes to Ca?* acquisition as part
of the normal growth and development of the plant
in addition to the Ca?* conductance associated with
signaling described by Ma et al. (2008).

In plant cells, the list of messengers used by signaling
pathways includes Ca%*, lipids, pH and cyclic GMP
(Sanders et al. 1999). No single messenger has been
demonstrated to respond to more stimuli than [Ca“]cyt
(Liu et al. 2003). [Ca?*]cy is sensed by several Ca?*-
binding proteins or sensors. CaM is ubiquitous among
eukaryotes and is thought to be involved in fundamental
cellular processes because of its extraordinary sequence
conservation (Lee et al. 2010); it is also a decoder for
Ca®* signals induced by NaCl. As a mediator protein
of Ca?* signaling, CaM is activated by binding Ca?*,
inducing a cascade of regulatory events (Takahashi
et al. 2011, Wu et al. 2012). Possible roles of [Ca2+]cyt
in CaM gene expression have been documented
(Holmstrom et al. 2000, Wu et al. 2012). After 24 h
of salt stress, CaM1 gene expression decreased in the
WT, which indicated transcription of normal genes was
hindered. Both exogenous applications of GB and GB
accumulation in vivo can increase the expression of
CaM1 gene during salt stress. In addition, the expression
decreased to a basal level with EGTA pretreatment
(Fig. 7A). These results indicated that the GB-induced
enhancement of CaM1 gene expression depended on
[Ca®T]eyt under NaCl stress.

GB can enhance the expression of HSPs (Li et al.
2011). This was especially apparent for the locating
chloroplast of HSP, which was rapidly increased in
untreated as compared with salt-stressed seedlings (Chen
et al. 2009). However, little is known about how GB
activates the genes encoding the HSPs. Various studies
revealed multiplicity and the complex nature of the plant
HSF family (Miller and Miller 2006), which makes the
study of the effects of GB on HSPs much more complex.
Levels of HSF1 were elevated in our study during salt
stress (Fig. 7B) in agreement with the study by Miller
and Miller (2006). GB could increase the expression of
HSF1 and HSF2 significantly under salt stress; whereas,
treatment with EGTA decreased their expression (Fig.
7B), which indicated that the involvement of Ca?* in
activation of HSF as reported previously by Mosser
et al. (1990). The qRT-PCR analysis also showed that
GB increased the mRNA levels of HSP70 and sHSPs
(HSP17.8, HSP18p and HSP26) genes in accordance
with proteomic analysis of salt-stressed tomato by Chen
(Chen et al. 2009), and EGTA decreased the mRNA level
(Fig. 7B, C), which confirmed the involvement of Ca?*
in HSP synthesis (Charng et al. 2007, Gong et al. 1997).

o |
| Salt stress

Galmadaiy Resistance Transiant Ca2*
3
Gene Efflux
HiFs
HSPs ==

Fig. 9. A putative signaling pathway of GB leads to optimal salt
tolerance via Ca?*-CaM and HSP during NaCl stress. GB elevates NaCl
induces an increase in [Ca”]cyt by activating Ca®* channels (NSCC)
and triggering Ca?* influx. [Ca?*].: activates CaM and promotes the
phosphorylation (P) of HSFs. Activated HSFs bind to HSP promoters and
induce HSP expression, which contributes to enhance salt tolerance.
Note: Ca’* affects other possible pathways that are not shown in this
model for the sake of clarity to show our results.

The results of this study showed that GB enhanced HSP
expression, which was dependent on a Ca?* signal.
Previous work showed that there is a CaM-binding
site within maize cytoplasmic HSP70 and that HSP70
binds CaM in a Ca’*-dependent manner (Sun et al.
2000). The conservation of the CaM-binding sequence
in cytoplasmic HSP70 family members from eukary-
otes implies that the binding of CaM to HSP70 could
have an essential biological function. HSP70 is a poten-
tial autoregulatory factor that is activated by Ca?* (Kiang
etal. 1994). CaM might play a regulatory function during
the expression of HSPs by binding directly to cytoplas-
mic HSP70. When used at the concentrations tested in
our study, EGTA, La**, verapamil, CPZ and W7 did not
affect the expression of the monitored genes when no
NaCl treatment was applied (data not shown), which was
consistent with studies by Liu et al. (2003) and Mosser
et al. (1990). These results suggest that HSF is activated
directly by a conformational change caused by calcium
or by other biochemical conditions. Expression of HSF,
sHSP and HSP70 genes was decreased by the CaM antag-
onists W7 and CPZ (Fig. 7B, C), which suggests that GB
increased the expression of HSP involved in the Ca?*-
CaM pathway under salt stress. The accumulation of
HSP70 decreased with EGTA, LaCls, verapamil and CaM
antagonist (Fig. 8A, B), which further confirms this point.
In conclusion, a putative model was proposed in
Fig. 9. NaCl signals are perceived by an unidentified
receptor and GB applied exogenously or accumulated in
vivo in BADH-transgenic plants may act as a cofactor to
activate Ca>* channels in the PM or intracellular Ca>*
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store membrane resulting in an increase in [Ca”]cyt.
This elevated level of [Ca?*]cy promoted the expression
of CaM1, which increased the DNA-binding activity
of HSF. Activation of HSF initiated transcription and
translation of HSP genes, which contributed to salt
tolerance of tobacco plants. Other pathways are possible
including the regulation of HSF phosphorylation by
regulation of CaM-dependent kinase, CDPK, MAPK
activity, etc.; future studies may determine definitively
which pathways are playing a role.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Table S1. The sequence of primers for qRT-PCR.



