查看“联想与创新”的源代码
←
联想与创新
跳转至:
导航
、
搜索
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看与复制此页面的源代码。
== '''NMT技术在针对RyR钙离子通道药物研究中的潜在贡献150118''' == Ryanodine受体(RyR)是已知的最大Ca2+通道,在心肌等肌肉的兴奋收缩中具有偶联作用。过去由于对RyR的结构还不是非常清楚,因此,在相关药物的设计和应用上还有一些误区存在,比如,药物的选择性不强及毒性较大等问题。因此,近日清华大学的颜宁和施一公等在RyR的结构研究方面取得的进展,对今后相关药物的研发与应用具有较大意义。 非损伤微测技术(NMT)可以在以下几个方面做出贡献: * 药物的选择性工作: 由于NMT可以直接测量Ca2+,Mg2+,Na+,K+ 等离子进出活体组织,通过在药物作用下测量Ca2+的进出情况来确定该药物的RyR选择性和有效性。 * 药物的毒性研究: 通过NMT测量组织的O2及K+等分子离子流生理生理指标,来验证不同药物的毒性。 * 对非肌肉组织RyR生理功能的研究: 由于NMT时间分辨率的局限,会使得NMT更适用于RyR在非肌肉组织中生理功能的研究。 == '''NO3-转运受体NRT1.1拥有多种NO3-信号传感机制150525''' == 2015年,《Nature》系列期刊的新成员《Nature Plants》刊登了一篇题为《Multiple mechanisms of nitrate sensing by Arabidopsisnitrate transceptor NRT1.1》的研究。拟南芥NRT1.1(NO3-转运蛋白基因)除了促进植株获取硝酸盐外,还起到调控NO3-同化作用基因的表达,调节根系结构等多种作用。本文研究了NRT1.1基因的两个关键残基(P492和T101)突变后对植株在功能及表型上的影响,证明NRT1.1可以激发拟南芥对不同环境所产生反应的独立信号通路。 [[File:插图.png|400px]] NMT潜在创新应用: 2013年,中国学者报道了在低NO3-条件下,NRT2.1的表达与乙烯的合成信号形成一个负反馈回路,并且利用非损伤微测技术(NMT)检测了NRT2.1突变体在不同浓度NO3-的环境中,植株根部NO3-的流速(Zheng, D., et al.Plant Cell Environ. 2013,36(7): 1328-1337.)。NRT1.1作为NRT1家族中唯一的双亲和性转运体,其突变后植株对NO3-吸收速率的改变,以及这一改变与功能和表型之间的联系,亟待探索。 Bouguyon E, et al. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1.Nature Plants. 2015, 1(3): 15015. == '''水稻抗高温基因研究取得突破进展150601''' == 2015年5月18日,《Nature Genetics》在线发表了上海植生生态所林鸿宣课题组的研究成果。 由于作物的高温抗性是由多个数量性状基因位点(QTL)控制的复杂性状,研究难度大,之前尚未有成功分离克隆作物抗高温QTL基因的报道。本研究以水稻作为材料,成功克隆了作物中第一个抗高温的QTL基因,并深入研究了其分子机理、在水稻演化史以及抗高温育种中的作用。 [[File:插图150601.jpg|400px]] NMT潜在创新应用: 2015年《Cell》刊登的一项研究表明,新鉴别出的水稻数量性状基因座COLD1赋予了植株抗寒性,且在寒冷胁迫下,COLD1的表达促进了Ca2+的吸收(Ma Y, et al. Cell. 2015, 160(6): 1209-21.)。同为温度胁迫,上文的水稻QTL基因是否也通过调控某些离子通道来提升植物的耐热性?此外,研究表明,高温胁迫会导致植株发生离子渗漏(Liang X, et al. BiologiaPlantarum. 2015, 59(1): 92-98.)。NMT将继续在植物耐寒耐热基因的功能研究上发挥重要作用。 Li X, et al. Natural alleles of a proteasomeα2 subunit gene contribute to thermotolerance and adaptation of African rice. NatureGenetics. 2015. doi:10.1038/ng.3305.
返回至
联想与创新
。
导航菜单
个人工具
登录
命名空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
帮助
NMT技术介绍
技术概况
技术原理
NMT与其它相关技术
NMT应用及文献
NMT学术资源
NMT文献总结
NMT应用成果
旭月图书
NMT 101问
旭月东升
文献精选
NMT创新思路
联想与创新
潜在应用
NMT实验设计
指标选取
检测部位
样品准备
测试液成分
样品固定
NMT测试服务
NMT检测过程
测试流程
实验设计
参考文献
数据处理与发表
NMT数据处理及文章发表
数据处理
文章撰写
文章发表
NMT设备与采购
NMT活体工作站系列产品(共12款)
非损伤微测系统全能型(经典版)
非损伤微测系统全能型(限量版)
了解系统耗材
了解售后服务
NMT设备应用单位
NMT设备应用实例
NMT论证素材汇总
NMT系统售后服务
NMT系统耗材
NMT系统操作培训
NMT仪器维修维护
NMT系统使用经验
NMT售后资源文件(重要文件)
国家自然科学基金申请材料
NMT测试计划
公司简介
旭月(北京)科技有限公司
旭月(北京)生物功能研究院
美国扬格公司
NMT产业联盟
工具
链入页面
相关更改
特殊页面
页面信息