六. 材料科学

来自NMT百科
跳转至: 导航搜索
  • NMT与航空工业不得不说的事 151019
       十月初,Nature刊出一篇名为《如何提高镁结构性能》的研究论文。镁作为一种轻质金属,应用范围广,但是,其高加工硬化度、低延展性和在非常低的应变下发生断裂的倾向影响了自身的实际应用价值。研究采用长时分子动态模拟法,揭示了上述缺陷的根本原因,为设计具有改进的机械性能的镁合金提供了一条途径。
       镁,在实用金属中密度最低,是铝的2/3、铁的1/4。因航空工业对材料轻量化的要求,早在1936年,德国已将镁合金用于飞机零部件的制作。如今军用、民用飞机已广泛使用镁合金,但镁合金在潮湿环境中易氧化与腐蚀,因此镁合金涂层防腐研究显得愈加重要。
       151019.png
       2013年,北方工业大学利用非损伤微测技术(NMT)首次发表了镁合金的研究成果。鉴于金属腐蚀研究对新技术的旺盛需求,旭月公司在近期推出NMT金属腐蚀工作站。相比于传统研究方法,NMT具有三维扫描、分辨率高、微观动态等检测特点,可直接测量涂层表面的Cl-等腐蚀介质的流速,间接反映腐蚀速率。在材料腐蚀微观机理研究、涂层评价等领域具有广泛的潜在应用价值。目前,旭月公司已与中国民航大学、中核集团等企事业单位达成初步合作意向。
       Zhao M, et al. An investigation of the effect of a magnetic field on the phosphate conversion coating formed on magnesium alloy. Appl Surf Sci, 2013,282: 499-505.

阅读原文


  • 都是融雪剂惹的祸 151123
       今日小雪:万物休眠,情兽生香”,“下雪天除了堆雪人,更嗨的32种玩法……”
       胖友圈的小伙伴们,你们昨天一定被公众号这样刷屏了。文艺如前者,朴实似后者。“忽如一夜春风来,千树万树梨花开”,洁白的雪花总能让我们领略到惊喜。但在北京,大雪中湿滑的路面、缓慢的车流,定会让通勤的人们痛不欲生。
       151123-1.png
       北京年平均降雪量约8.4毫米,国际性大都市中降雪量高于北京的比比皆是,特别是“局部地区”,比如我们的近邻日本,让我们来看看他们是如何应对大雪的。道路两旁是积雪如山,但是,马路却很是干净,一点都没有结冰,也没有积雪。这是为什么?秘密就在地下。其实,马路下面是温泉水晒热系统。一是利用地热,建设管网为马路加热。二是在地下埋入水管,积雪时开启喷水模式(温水)。当然,更多没有这类设施的城市都会建立一套完善的铲雪机制。
       151123-2.png
       但是在中国,融雪剂却依然被广泛地用于市政除雪作业。融雪剂分两类,一类是价格高,但无腐蚀作用的有机盐;另一类是以“氯盐”为主的无机盐。相比于前者,后者因价格低廉,除机场等重要场所外,利用率居高不下,而无机盐类融雪剂的危害显而易见。首先会造成道路两侧绿化带土壤盐化,影响绿化带植物生长;其次,接触渗入建筑材料,极易造成电化学腐蚀。说到这里,作为NMT人,我将再次无耻地“强带”各位来到我的本行。
       151123-3.png
       融雪剂中的Na+、Cl-是导致植物盐害的罪魁祸首。过高的盐离子破坏了植物根部的Na+/K+平衡,利用非损伤微测技术(NMT)检测植物根部的K+流速发现,盐胁迫下,植物根部K+出现外排,而耐盐品种相较于盐敏感品种,其根部K+外排速率更低(Chen ZH, et al. Plant, Cell and Environment, 2005, 28:1230 – 1246.)。Cl-作为金属腐蚀研究领域中重要的腐蚀介质,NMT可以直接进行检测,其进出金属材料表面的流速是否与腐蚀速率有关,有待各位小伙伴来揭示。目前,NMT盐胁迫工作站、NMT金属腐蚀工作站均已上市,29.5万起,旭月公司的淘宝网店也有售哦。
       最后还是要感慨一句,生活真是无处不NMT啊!

阅读原文


  • 旭月NMT与新兴太阳能电池的不解之缘 160718
       2009年——3.8%,2012年——15%,2016年——22.1%。从无到有,从低到高,不足7年的时间,学术界将钙钛矿型甲胺铅碘薄膜太阳能电池(钙钛太阳能电池)的光电转换斜率提升了近6倍。而晶体硅太阳能电池研究历时40年,至今其光电转换效率不过25%。钙钛太阳能电池自2009年出现以来,凭借其低成本、易生产,研究进展迅速,当之无愧地成为太阳能电池研究的最热关注点。
       160718-1.jpg
       图注:用扫描电子显微镜观察到的钙钛矿电池横截面图像。从上往下依次是金(作为阳极)、HTM空穴传输层,TiO2/CH3NH3PbI3(钙钛矿)、FTO透明导电玻璃,以及位于最下层的玻璃(Nature, 2013, 499(7458): 316-319.)。图片来源:nature.com
       国内以及华人学者在此领域的贡献同样光芒四射。2014年8月,加州大学洛杉矶分校的杨阳团队,通过改进钙钛矿结构层,选择更适合传输电荷的材料,成功地将钙钛矿太阳能电池的转换效率提升至19.3%,成为当时的世界之最(Science, 2014, 345(6196): 542-546.)。刚过去的7月,中国科学院合肥物质科学研究院方晓东课题组在Nanoscale上发表最新研究成果,认为pbi2能否起到钝化作用并提升电池性能的关键在于pbi2存在的位置及存在的量。通过对ch3nh3pbi3薄膜荧光寿命的测量和对相应pscs中暗电流和电荷复合阻抗的测量等,发现ch3nh3pbi3颗粒之间pbi2的钝化作用对电荷复合存在抑制效果(Nanoscale,2016,8:6600-6608.)。
       “检测界面两端离子/分子的流动信息”,这正是对非损伤微测技术(NMT)这一概念的最准确的定义,也由此可见NMT在电池研究中所具有的先天优势。NMT可以检测Cd2+、H+ 、O2等与电池各方面性能相关的离子/分子流速,国内奇瑞汽车曾试图利用NMT提升其电池的储电能力及环保优化研究。
       160718-2.png
       图片来源:http://www.artc.org.tw/
       中国科学院生态环境研究中心已经将非损伤微测技术同微生物燃料电池技术结合,研究了水稻向根际环境中释放氧气(O2)的能力,发现在水稻根际存在一个新型的生物阴极,并且它能够在电子传递到根的泌氧过程中进行氧化还原反应(Bioresource Technol, 2012, 108: 55-59.)。
       160718-3.jpg
       图注:水稻根部不同区域在缺氧条件下O2流速的变化。
       在当前能源日益紧缺和环保压力不断增大,各国开始力推可再生能源的背景下,开发和利用太阳能已成为可再生能源中最炙热的“新宠”,发展太阳能已是大势所趋,太阳能时代已为时不远了。NMT能够“检测界面两端离子/分子的流动信息”的独特优势,为新型太阳能电池的不断涌现开辟崭新的道路!

阅读原文



返回上一级